Precise control of Cu_2O nanostructures and LED-assisted photocatalysis

Yang Su^a, Arokia Nathan*^a, Hanbin Ma^a, and Hua Wang^b

Fig.S1 Schematic illustration of the synthesis procedure of Cu₂O nanocrystals of various morphologies. The morphologies can be precisely controlled by adjusting the molar ratio 'r' of hydroxylamine hydrochloride and copper salt.

Fig.S2 SEM images of cubic and octahedral Cu_2O nanocrystals: (a) SEM image of cubic Cu_2O nanocrystals. (b) SEM image of octahedral Cu_2O nanocrystals.

Fig.S3 TEM images of rhombic dodecahedral Cu_2O nanocrystals: (a) TEM image viewed along [110] direction. (b) High-resolution TEM image of the square region of Cu_2O nanocrystals.

Fig.S4 UV-vis spectra of Cu_2O nanocrystals. Cu_2O nanocrystals with various morphologies show different wavelength peaks.

Fig.S5 XPS spectra of rhombic dodecahedral Cu₂O nanocrystals.

Fig.S6 Cross section of photocatalytic reactor.

Fig.S7 Degradation of MO by rhombic dodecahedral Cu_2O photocatalysts with and without 500-nm filter.

Fig.S8 SEM image of rhombic dodecahedral Cu_2O photocatalysts after five cycles of photocatalytic reactions. Some holes and nanosheets can be observed on the surface of Cu_2O nanocrystals, indicating the {110} facets gradually transforming into nanosheets during photocatalytic degradation.

Fig.S9 Structure and atomic arrangement of Cu_2O nanocrystals: (a) unit cell of Cu_2O . (b) atomic arrangement of {100} plane. (c) atomic arrangement of {110} plane. (d) atomic arrangement of {111} plane.

Fig.S10 Concentration of toluene versus reaction time using rhombic dodecahedral Cu_2O photocatalysts. Inset: degradation mechanism of toluene. Toluene is degraded by hydroxyl-like chemistry and SET chemistry to form molecules including 3-heptanol and 2-methyl-2-propanol. The intermediate products further react with electrons, holes and hydroxyl species to form carbon dioxide and water.