SUPPLEMENTARY INFORMATION

POLYHYDROXYLATED FEW LAYERS GRAPHENE FOR THE PREPARATION OF FLEXIBLE CONDUCTIVE CARBON PAPER

Vincenzina Barbera, Alessandro Porta, Luigi Brambilla, Silvia Guerra, Andrea Serafini, Antonio Marco Valerio, Alessandra Vitale and Maurizio Galimberti

Table S.1. Elemental analysis of HSAG and functionalized samples	2					
Table S.2. Mass losses of HSAG and G-OH samples, from TGA analysis	2					
Figure S.1. TGA thermograph of pristine HSAG	3					
Figure S.2. TGA thermograph of pristine G-OH-M	3					
Figure S.3 TGA thermograph of pristine G-H-T	4					
Figure S.4 TGA thermograph of pristine G-OH-TM	4					
Figure S.5. Proposed two step mechanism for the reaction between HSAG and KOH	5					
Figure S.6. Linear relationship between the absorbance at 260 nm and the concentration of w	ater					
solution of G-OH-TM	6					
Figure S.7. WAXD patterns of G-OH-M (a), paper support (b) and carbon paper obtained by						
deposing G-OH-M water solutions (1 mg/mL, 100 µm bar) (c)	7					
Figure S.8 CVs of 0.1 M Et ₄ NBF ₄ /10 mM K ₄ Fe(CN) ₆ solution (a), 0.125 mM G-OH suspensio	on/0.1					
M Et ₄ NBF ₄ (b) and 0.1 M Et ₄ NBF ₄ /10 mM K ₄ Fe(CN) ₆ solution and 0.125 mM G-OH (c)	8					

Adduct	С	Н	0	Ν	Residue
HSAG	95.4	0.4	4.2	/	/
GO	48.5	2.2	36.4	0.2	13.8
G-OH-M	89.1	0.6	6.1	0.2	4.9
G-OH-T	91.0	0.5	5.0	0.2	3.4

Table S.1. Elemental analysis of HSAG and functionalized samples

Table S.2 Mass losses of HSAG and G-OH samples, from TGA analysis

Sample	Mass loss [%]						
	T < 150°C	150°C < T < 700°C	T > 700°C	Residue			
HSAG	1.4	1.8	96.8	/			
G-OH-T	2.0	2.0	92.5	3.6			
G-OH-M	3.0	2.9	90.2	4.1			
G-OH-TM	2.9	2.2	91.0	4.0			

Figure S.1. TGA thermograph of pristine HSAG

Figure S.2. TGA thermograph of pristine G-OH-M

Figure S.3 TGA thermograph of pristine G-OH-T

Figure S.4 TGA thermograph of pristine G-OH-TM

Figure S.5. Proposed two step mechanism for the reaction between HSAG and KOH.

Figure S.6. Linear relationship between the absorbance at 260 nm and the concentration of water solution of G-OH-TM

Figure S.7. WAXD patterns of G-OH-M (a), paper support (b) and carbon paper obtained by deposing G-OH-M water solutions $(1 \text{ mg/mL}, 100 \text{ }\mu\text{m} \text{ }bar)$ (c)

Figure S.8. CVs of 0.1 M $Et_4NBF_4/10$ mM $K_4Fe(CN)_6$ solution (a), 0.125 mM G-OH suspension/0.1 M Et_4NBF_4 (b) and 0.1 M $Et_4NBF_4/10$ mM $K_4Fe(CN)_6$ solution and 0.125 mM G-OH (c)

