Supplementary Materials

Efficient conversion of furfuryl alcohol to ethyl levulinate with sulfonic acid-functionalized MIL-101(Cr)

Xiao-Fang Liu, Hu Li, Heng Zhang, Hu Pan, Shan Huang, Kai-Li Yang and Song Yang* a,b

a State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China. b School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China.

Table contents

Fig. S1. EL yield profiles of the reaction solution (a) with MIL-101(Cr)-SO₃H catalyst or (b) without MIL-101(Cr)-SO₃H catalyst

Scheme S1 Proposed reaction pathway for the acid-catalyzed conversion of furfuryl alcohol to ethyl levulinate in EtOH.

Fig. S2. The intermediates and byproducts identified by GC-MS during the course of the one-pot ethanolysis reaction.

Table S1 The intermediates and byproducts identified by GC-MS during the course of the one-pot ethanolysis reaction.

Fig. S3. GC-MS spectra of the intermittent sampling reaction mixture

Fig. S1. EL yield profiles of the reaction solution (a) with MIL-101(Cr)-SO₃H catalyst or (b) without MIL-101(Cr)-SO₃H catalyst (filtrated after 30 min). (Reaction conditions: molar ratio of FA to EtOH =1:60, MIL-101(Cr)-SO₃H (100 mg), 140 °C)

Scheme S1 Proposed reaction pathway for the acid-catalyzed conversion of furfuryl

alcohol to ethyl levulinate in EtOH.

Fig. S2. The intermediates and byproducts identified by GC-MS during the course of the one-pot ethanolysis reaction. (Reaction conditions: molar ratio of FA to EtOH =1:60, MIL-101(Cr)-SO₃H (100 mg), 120 °C)

Table S1 The intermediates and byproducts identified by GC-MS during the course of the one-pot ethanolysis reaction. (Reaction conditions: molar ratio of FA to EtOH =1:60, MIL-101(Cr)-SO₃H (100 mg), 120 °C)

Molecular	Name of compound	Retention	Products	Relative
structure		time		amount (%)
	Ethyl levulinate	15.975	Main product	28.8
	2-(Ethoxymethyl)furan (2-EMF)	8.265	Intermediate	36.9
	4,5,5-Triethoxypentan-2-one (TEP)	26.931	Intermediate	22.7
	4,5-Diethoxy-5-hydroxypentan-2-one (DHP)	23.988	Intermediate	3.5
0	Angelica lactone	9.755	Byproduct	1.0
	2,2'-Methylenebis(furan)	16.741	Byproduct	0.3

Fig. S3. GC-MS spectra of the intermittent sampling reaction mixture: GC spectrum with main retention time at 120 °C for 15 min (a), GC spectrum with main retention time at 120 °C for 30 min (b), GC spectrum with main retention time at 120 °C for 60 min (c), GC spectrum with main retention time at 120 °C for 120 min (d). (Reaction conditions: molar ratio of FA to EtOH =1:60, MIL-101(Cr)-SO₃H (100 mg), 120 °C)