Supporting information for

The first solvent-free synthesis of privileged γ - and δ -lactams via the Castagnoli-Cushman reaction

Anastasia Lepikhina, Dmitry Dar'in, Olga Bakulina and Mikhail Krasavin*

Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Peterhof, 198504 Russian Federation

* Corresponding Author; phone: + 7 931 3617872, fax: +7 812 428 6939.

E-mail: <u>m.krasavin@spbu.ru</u>

Table of Contents

1. General Information	
2. Experimental procedures and analytical data	S2
3. Crystallographic data for compounds 7a, 7i and 8a	S13
4. References	S14
5. Copies of ¹ H and ¹³ C NMR spectra of compounds 6, 7, 8 and 9	S15

1. General Information

NMR spectra were recorded on a Bruker Avance III 400 spectrometer (¹H: 400.13 MHz; ¹³C: 100.61 MHz; chemical shifts are reported as parts per million (δ , ppm); the residual solvent peaks were used as internal standards: 7.28 and 2.50 ppm for ¹H in CDCl₃ and DMSO-*d*₆ respectively, 40.01 and 77.02 ppm for ¹³C in DMSO-*d*₆ and CDCl₃ respectively; multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad; coupling constants, *J*, are reported in Hz. Mass spectra were recorded on a Bruker micrOTOF spectrometer (ESI ionization). Melting points were determined in open capillary tubes on Stuart SMP30 Melting Point Apparatus.

2. Experimental procedures and analytical data

Table S1. Screening of temperature regimens for the solvent-free reaction N-benzylidene aniline with succinic (2) and glutaric (3) anhydrides.^{*a*}

Temperature	Yield (n = 2)	Conversion of imine	Yield (n = 1)	Conversion of imine
90 °C	< 20%	~40%	< 20%	~50%
110 °C	24%	~50%	22%	~60%
130 °C	42%	98%	36%	100%
150 °C	65%	100%	48%	100%
170 °C	66%	100%	50%	100%

^{*a*}The data represent NMR yield of the product (*trans+cis*).

Sample preparation: Anhydride 2 or 3 (20 mg) and *N*-(benzylidene)aniline (1 equiv.) were grounded together and placed in a glass test tube with a screw cap, placed in a pre-heated bath and kept at corresponding temperature for 24 hours. After cooling to ambient temperature the reaction mixture was dissolved in CDCl₃ (with addition of a few drops of DMSO- d_6) and transferred into NMR test-tube. *n*-Tetradecane was added as internal standard (0.4–0.7 equiv.). The intensity of 2-CH protons of **6a** or **7a** was determined relative to intensity of CH₃ protons signals in *n*-tetradecane (integrated from 0.92 to 0.80 ppm equal 6). The NMR yield of **6a** or **7a** was calculated from equation:

$$NMR \ yield = \frac{l \times n(st)}{0.1136 \times 0.88} \times 100\%$$

n(st) – amount of added *n*-tetradecane (mmol)

The factor of 0.9 was determined from ¹H NMR integration experiments of solutions containing known concentrations of **6a** or **7a** and *n*-tetradecane to reflect the difference in relaxation times of 2-CH protons in **6a** or **6a** and the protons of terminal methyl groups in *n*-tetradecane.

Preparation of Castagnoli-Cushman lactams 6, 7, 8 and 9.

General procedure (scale – 2 mmol for 2, 1.75 mmol for 3 and 1 mmol for 4,5). The corresponding cyclic anhydride (1 equiv.) and imine 1 (1 equiv.) were grounded together and placed in a glass test tube with a screw cap, placed in a pre-heated bath (150 °C or 170 °C) and kept at this temperature for indicated period of time.

Method A (this was used, unless otherwise stated). After cooling to ambient temperature 10% aqueous KHCO₃ (8 mL) was added and mixture was stirred vigorously for 10–16 hours. Filtration through a pad of Celite afforded clear aqueous solution which was acidified with conc. HCl to pH \sim 2 and stirred for 1–2 h in ice bath. The crystalline precipitate was collected and dried in air to yield product as diastereomeric mixture (*dr* varies from 10:1 to 3:1) with purity not less than 95%. Recrystallization from aqueous ethanol was used for additional purification and isolation of pure *trans*-isomer in some cases.

Method B. After cooling to ambient temperature reaction mixture was dissolved in a minimum amount of boiling ethanol and water was gradually added to the stirred hot solution till opacity appears. After cooling in ice bath the crystals formed was filtered and dried in air.

trans/cis-5-Oxo-1,2-diphenylpyrrolidine-3-carboxylic acid (6a). Yield 280 mg (50%), dr 7:1; crystallization from aqueous ethanol afforded dr 10:1; Beige solid; ¹H NMR (400 MHz, DMSO- d_6) δ for *trans*-isomer:^[1] 12.89 (br.s, 1H, COOH), 7.41 (d, J = 8.0Hz, 2H), 7.35 – 7.21 (m, 7H), 7.05 (t, J = 7.4 Hz, 1H), 5.58 (d, J = 5.3 Hz, 1H, 2-H), 3.10 (ddd, J = 9.5, 6.6, 5.3 Hz, 1H, 3-H), 2.97 (dd, J = 17.0, 9.5 Hz, 1H, 4-H), 2.76 (dd, J = 17.0, 6.6 Hz, 1H, 4-H). ¹³C NMR (101 MHz, DMSO- d_6) δ for *trans*isomer: 174.0, 172.3, 140.8, 138.1, 129.2, 128.9, 128.3, 127.2, 125.3, 123.2, 65.2,

46.2, 34.6. HRMS (ESI), m/z calcd for C₁₇H₁₅NO₃ [M+Na]⁺ 304.0944, found 304.0943.

trans/cis-2-(4-Methoxyphenyl)-5-oxo-1-phenylpyrrolidine-3-carboxylic acid (6b). Yield 306 mg

(50%), dr 5:1; crystallization from aqueous ethanol afforded dr 7:1; Beige solid; ¹H NMR (400 MHz, DMSO-d₆) δ for *trans*-isomer: 12.80 (br.s, 1H, COOH), 7.39 (d, J = 7.8 Hz, 2H, o-Ph), 7.29 – 7.20 (m, 4H, 2',6'-H and m-Ph), 7.05 (t, J = 7.4 Hz, 1H, p-Ph), 6.84 (d, J = 8.7 Hz, 2H, 3',5'-H), 5.50 (d, J = 5.5 Hz, 1H, 2-H),), 3.69 (s, 3H, OCH₃), 3.08 (ddd, J = 9.4, 6.9, 5.5 Hz, 1H, 3-H), 2.95 (dd, J = 16.9, 9.4 Hz, 1H, 4-H), 2.74 (dd, J = 16.9, 6.9 Hz, 1H, 4-H). ¹³C NMR (101

MHz, DMSO- d_6) δ for *trans*-isomer: 174.1, 172.2, 159.2, 138.2, 132.5, 128.9, 128.5, 125.3, 123.4, 114.5, 64.8, 55.5, 46.4, 34.6. HRMS (ESI), *m/z* calcd for C₁₈H₁₇NO₄ [M+Na]⁺ 334.1050, found 334.1056.

trans/cis-2-(4-Fluorophenyl)-5-oxo-1-phenylpyrrolidine-3-carboxylic acid (6c). Crystallization

from aqueous ethanol afforded 234 mg (40%), dr 7:1; Beige solid; ¹H NMR (400 MHz, DMSO- d_6) δ for *trans*-isomer:^[1] 12.85 (br.s, 1H, COOH), 7.41 – 7.35 (m, 4H, 2',6'-H and *o*-Ph), 7.25 (t, J = 7.6 Hz, 2H, *m*-Ph), 7.12 (t, J = 8.8 Hz, 2H, 3',5'-H), 7.06 (t, J = 7.4 Hz, 1H, *p*-Ph), 5.59 (d, J = 5.8 Hz, 1H, 2-H), 3.12 (ddd, J = 9.5, 7.2, 5.7 Hz, 1H, 3-H), 2.96 (dd, J = 17.0, 9.5 Hz, 1H, 4-H), 2.76 (dd, J = 17.0, 7.2 Hz,

1H, 4-H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ for *trans*-isomer: 173.9, 172.2, 162.0 (d, *J* = 243.8 Hz), 138.0, 136.9 (d, *J* = 3.0 Hz), 129.5 (d, *J* = 8.4 Hz), 128.9, 125.4, 123.5, 115.9 (d, *J* = 21.5 Hz), 64.5, 46.2, 34.5. HRMS (ESI), *m/z* calcd for C₁₇H₁₄FNO₃ [M+Na]⁺ 322.0850, found 322.0849.

trans-5-Oxo-1-phenyl-2-(3-(trifluoromethyl)phenyl)pyrrolidine-3-carboxylic acid (6d). Yield

239 mg (35%), dr 9:1; crystallization from aqueous ethanol afforded pure transisomer; Beige solid; Mp 169–170 °C (EtOH-H₂O); ¹H NMR (400 MHz, DMSO-d₆) δ 12.92 (br.s, 1H, COOH), 7.74 (s, 1H, 2'-H), 7.65 (d, J = 7.6 Hz, 1H, 4'-H), 7.58 (d, J = 7.9 Hz, 1H, 6'-H), 7.52 (t, J = 7.7 Hz, 1H, 5'-H), 7.40 (d, J = 7.8 Hz, 2H, o-Ph), 7.25 (t, J = 7.8 Hz, 2H, m-Ph), 7.06 (t, J = 7.6 Hz, 1H, p-Ph), 5.73 (d, J = 6.2 Hz, 1H, 2-H), 3.21 (ddd, J = 9.5, 7.5, 6.2 Hz, 1H, 3-H),

2.97 (dd, J = 17.0, 9.5 Hz, 1H, 4-H), 2.80 (dd, J = 17.0, 7.5 Hz, 1H, 4-H). ¹³C NMR (101 MHz, DMSOd₆) δ 173.7, 172.3, 142.2, 137.8, 131.6, 130.1, 129.7 (q, J = 31.7 Hz), 125.6, 125.1 (q, J = 3.7 Hz), 124.5 (q, J = 272.4 Hz), 124.4 (q, J = 4.1 Hz), 123.6, 64.5, 45.9, 34.5. HRMS (ESI), m/z calcd for C₁₈H₁₄F₃NO₃ [M+H]⁺ 350.0999, found 350.1002. trans/cis-1-(4-Methoxyphenyl)-5-oxo-2-(p-tolyl)pyrrolidine-3-carboxylic acid (6e). Crystallization

from aqueous ethanol afforded 220 mg (35%), dr 9:1; additional crystallization afforded dr 16:1; Beige solid; ¹H NMR (400 MHz, DMSO- d_6) δ 12.80 (br.s, 1H, COOH), 7.26 (d, J = 9.0 Hz, 2H, 2",6"-H), 7.19 (d, J = 8.1 Hz, 2H, 2',6'-H), 7.09 (d, J = 8.0 Hz, 2H, 3',5'-H), 6.80 (d, J = 9.0 Hz, 2H, 3",5"-H), 5.42 (d, J = 5.6 Hz, 1H, 2-H), 3.67 (s, 3H, OCH₃), 3.06 (ddd, J = 9.5, 7.0, 5.6 Hz, 1H, 3-H), 2.92 (dd, J = 16.9, 9.5 Hz, 1H, 4-H), 2.72 (dd, J = 16.9, 7.0 Hz, 1H, 4-H), 2.23 (s, 3H, 4'-CH₃). ¹³C NMR (101 MHz, DMSO) δ 174.1, 172.0, 156.8, 137.8, 137.5,

131.1, 129.7, 127.3, 125.2, 114.1, 65.5, 55.5, 46.3, 34.5, 21.1. HRMS (ESI), m/z calcd for C₁₉H₁₉NO₄ [M+Na]⁺ 348.1206, found 348.1215.

trans/cis-1-(4-Chlorophenyl)-5-oxo-2-(p-tolyl)pyrrolidine-3-carboxylic acid (6f). Crystallization

from aqueous ethanol afforded 148 mg (24%), *dr* 9:1; Beige solid; ¹H NMR (400 MHz, DMSO) δ for *trans*-isomer: 12.87 (br.s, 1H, COOH), 7.43 (d, *J* = 8.9 Hz, 2H, 2",6"-H), 7.30 (d, *J* = 8.9 Hz, 2H, 3",5"-H), 7.20 (d, *J* = 8.1 Hz, 2H, 2',6'-H), 7.10 (d, *J* = 8.1 Hz, 2H, 3',5'-H), 5.52 (d, *J* = 5.5 Hz, 1H, 2-H), 3.08 (ddd, *J* = 9.4, 6.9, 5.5 Hz, 1H, 3-H), 2.95 (dd, *J* = 17.0, 9.4 Hz, 1H, 4-H), 2.76 (dd, *J* = 17.0, 6.9 Hz, 1H, 4-H), 2.23 (s, 3H, CH₃). ¹³C NMR (101 MHz, DMSO-*d*₆) δ for *trans*-isomer: 173.9, 172.4, 137.6, 137.4, 137.1, 129.8, 129.2, 128.8, 127.1, 124.8, 64.9,

46.2, 34.6, 21.1. HRMS (ESI), *m/z* calcd for C₁₈H₁₆ClNO₃ [M+Na]⁺ 352.0711, found 352.0716.

trans/cis-1,2-Bis(4-fluorophenyl)-5-oxopyrrolidine-3-carboxylic acid (6g). Crystallization from

aqueous ethanol afforded 220 mg (36%), dr 7:1; Beige solid; ¹H NMR (400 MHz, DMSO-d₆) δ for trans-isomer: 12.86 (br.s, 1H, COOH), 7.41 – 7.37 (m, 4H, 2',6'-H and 2",6"-H), 7.15 – 7.06 (m, 4H, 3',5'-H and 3",5"-H), 5.55 (d, J = 6.1 Hz, 1H, 2-H), 3.16 – 3.10 (m, 1H, 3-H), 2.94 (dd, J = 17.0, 9.5 Hz, 1H, 4-H), 2.76 (dd, J = 17.0, 7.6 Hz, 1H, 4-H).¹³C NMR (101 MHz, DMSO-d₆) δ for trans-isomer: 173.8, 172.2, 162.0 (d, J = 250.9 Hz), 159.6 (d, J = 249.0 Hz), 136.70 (d, J = 3.0 Hz), 134.26 (d, J = 2.7 Hz), 129.65 (d, J = 8.4 Hz), 125.78 (d, J = 8.3 Hz), 115.91 (d, J = 3.0 Hz)

= 21.6 Hz), 115.65 (d, J = 22.4 Hz), 64.7, 46.2, 34.5. HRMS (ESI), m/z calcd for C₁₇H₁₃F₂NO₃ [M+Na]⁺ 340.0756, found 340.0743.

trans-2-(4-Chlorophenyl)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-5-oxopyrrolidine-3-carboxylic

acid (6h). Method A: crystallization from aqueous ethanol afforded 209 mg (28%), *dr* 10:1. Method B: yield 373 mg (50%), pure *trans*-isomer; Beige solid; Mp 210–211 °C (EtOH-H₂O); ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.87 (br.s, 1H, COOH), 7.39 – 7.34 (m, 4H, ArH'), 6.93 (d, *J* = 2.4 Hz, 1H, 2"-H), 6.78 (dd, *J* = 8.7, 2.4 Hz, 1H, 6"-H), 6.71 (d, *J* = 8.7 Hz, 1H, 5"-H), 5.47 (d, *J* = 5.7 Hz, 1H, 2-H), 4.19 – 4.14 (m, 4H, OCH₂CH₂O), 3.07 (ddd, *J* = 9.5, 7.1, 5.7 Hz, 1H, 3-H), 2.90

(dd, J = 17.0, 9.5 Hz, 1H, 4-H), 2.72 (dd, J = 17.0, 7.1 Hz, 1H, 4-H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 173.8, 172.1, 143.3, 141.3, 139.9, 132.8, 131.3, 129.4, 129.1, 117.0, 116.7, 113.0, 64.7, 64.5, 64.3, 46.0, 34.3. HRMS (ESI), *m/z* calcd for C₁₉H₁₆ClNO₅ [M+H]⁺ 374.0790, found 374.0795.

trans/cis-2-(4-(Methoxycarbonyl)phenyl)-5-oxo-1-(p-tolyl)pyrrolidine-3-carboxylic acid (6i).

Method A: crystallization from aqueous ethanol afforded 261 mg (37%), dr 10:1. Method **B**: yield 380 mg (54%), *dr* 11:1; Beige solid; ¹H NMR (400 MHz, DMSO- d_6) δ for *trans*-isomer: 12.91 (br.s, 1H, COOH), 7.87 (d, J = 8.3 Hz, 1H, 3',5'-H), 7.48 (d, J = 8.3 Hz, 1H, 2',6'-H), 7.27 (d, J = 8.4 Hz, 1H, 2",6"-H), 7.04 (d, J = 8.4 Hz, 1H, 3",5"-H), 5.62 (d, J = 5.7 Hz, 1H, 2-H), 3.81 (s, 3H, CO_2CH_3), 3.13 (ddd, J = 9.6, 7.1, 5.7 Hz, 1H, 3-H), 2.94 (dd, J = 17.0, 9.6 Hz,

1H, 4-H), 2.77 (dd, J = 17.0, 7.1 Hz, 1H, 4-H), 2.18 (s, 3H, CH₃). ¹³C NMR (101 MHz, DMSO- d_6) δ for trans-isomer: 173.7, 172.1, 166.3, 146.3, 135.4, 134.7, 130.0, 129.6, 129.4, 127.8, 123.3, 64.9, 52.6, 45.8, 34.4, 20.8. HRMS (ESI), m/z calcd for C₂₀H₁₉NO₅ [M+Na]⁺ 376.1155, found 376.1139.

trans/cis-2-(2-Chlorophenyl)-5-oxo-1-(p-tolyl)pyrrolidine-3-carboxylic acid (6j). Crystallization

from aqueous ethanol afforded 228 mg (37%), dr 10:1; Beige solid; ¹H NMR (400 MHz, DMSO- d_6) δ for *trans*-isomer: 13.00 (br.s, 1H, COOH), 7.46 – 7.43 (m, 1H, 6'-H), 7.32 - 7.27 (m, 5H, 3',4',5'-H and 2",6"-H), 7.08 (d, J = 8.4 Hz, 2H, 3",5"-H), 5.86 (d, J = 4.0 Hz, 1H, 2-H), 3.16 – 3.07 (m, 1H, 3-H), 2.98 (dd, J = 17.2, 9.6 Hz, 1H, 4-H), 2.74 (dd, J = 17.2, 4.9 Hz, 1H, 4-H), 2.20 (s, 3H, CH₃). ¹³C NMR (101 MHz, DMSO-d₆) δ for *trans*-isomer: 174.0, 172.3, 137.2, 135.5, 134.7, 132.5, 130.5, 130.5, 130.1, 129.6, 128.2, 122.4, 62.6, 44.4, 34.6, 20.8. HRMS (ESI), m/z

calcd for C₁₈H₁₆ClNO₃ [M+H]⁺ 330.0891, found 330.0894.

trans/cis-1,2-Bis(4-methoxyphenyl)-5-oxopyrrolidine-3-carboxylic acid (6k). Crystallization from

Ć)

aqueous ethanol afforded 237 mg (37%), dr 10:1; Beige solid; ¹H NMR (400 MHz, DMSO- d_6) δ for *trans*-isomer: 12.76 (br.s, 1H, COOH), 7.25 (d, J = 9.0Hz, 2H, 2",6"-H), 7.23 (d, J = 8.7 Hz, 2H, 2',6'-H), 6.84 (d, J = 8.7 Hz, 2H, 3',5'-H), 6.80 (d, J = 9.0 Hz, 2H, 3",5"-H), 5.40 (d, J = 5.8 Hz, 1H, 2-H), 3.69 (s, 3H, 4'-CH₃), 3.67 (s, 3H, 4"-CH₃), 3.08 (ddd, *J* = 9.5, 7.2, 5.8 Hz, 1H, 3-H), 2.92 (dd, J = 16.9, 9.5 Hz, 1H, 4-H), 2.72 (dd, J = 16.9, 7.2 Hz, 1H, 4-H). ¹³C NMR (101 MHz, DMSO-d₆) δ for *trans*-isomer: 174.1, 171.9, 159.2, 156.9,

132.6, 131.0, 128.7, 125.4, 114.4, 114.1, 65.3, 55.5, 55.4, 46.4, 34.5. HRMS (ESI), m/z calcd for $C_{19}H_{19}NO_5 [M+Na]^+ 364.1155$, found 364.1155

trans/cis-5-Oxo-2-(thiophen-3-yl)-1-(p-tolyl)pyrrolidine-3-carboxylic acid (6**l**). Method A: crystallization from aqueous ethanol afforded 209 mg (35%), dr 6:1. Method B: CO₂H vield 377 mg (63%) dr 7:1; Beige solid; ¹H NMR (400 MHz, DMSO- d_6) δ for trans-isomer: 12.82 (br.s, 1H, COOH), 7.45 (dd, J = 4.9, 3.0 Hz, 1H, 4'-H), 7.42 2' (dd, J = 3.0, 1.3 Hz, 1H, 2'-H), 7.27 (d, J = 8.5 Hz, 2H, 2'', 6''-H), 7.09 - 7.05 (m, 100)3H, 5'-H and 3", 5"-H), 5.61 (d, J = 5.0 Hz, 1H, 2-H), 3.14 (ddd, J = 9.5, 6.3, 5.0 Hz, 1H, 3-H), 2.97 (dd, J = 17.0, 9.5 Hz, 1H, 4-H), 2.71 (dd, J = 17.0, 6.3 Hz, 1H, 4-H), Мe 2.21 (s, 3H, CH₃). ¹³C NMR (101 MHz, DMSO-*d*₆) δ for *trans*-isomer: 174.1,

171.8, 141.9, 135.6, 134.7, 129.4, 127.5, 126.5, 123.8, 123.5, 61.4, 45.3, 34.6, 20.9. HRMS (ESI), m/z calcd for $C_{16}H_{15}NO_3SNa [M+Na]^+ 324.0665$, found 324.0670.

trans-6-Oxo-1,2-diphenylpiperidine-3-carboxylic acid (7a). Yield 400 mg (67%), dr 6:1; crystallization from aqueous ethanol afforded pure *trans*-isomer; Colorless solid; Mp 258–259 °C (EtOH-H₂O) (lit^[1] Mp 200 °C); ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.56 (br.s, 1H, COOH), 7.33 – 7.30 (m, 4H, ArH), 7.28 – 7.21 (m, 3H, ArH), 7.19 – 7.10 (m, 3H, ArH), 5.37 (d, J = 4.4 Hz, 1H, 2-H), 3.00 (dt, J = 5.8, 4.5 Hz, 1H, 3-H), 2.67 (ddd, J = 18.0, 6.8, 5.6 Hz, 1H, 5-H), 2.56 – 2.48 (m, 1H, 5-H), 2.16 – 2.06 (m, 1H, 4-H), 2.03 – 1.94 (m, 1H, 4-H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 173.8, 169.1, 143.0, 141.0, 128.85, 128.80, 127.87, 127.85, 127.5, 126.6, 65.8, 46.8, 30.4, 20.3, HPMS (ESI), *m/z* called for C. H.-NO.

128.80, 127.87, 127.85, 127.5, 126.6, 65.8, 46.8, 30.4, 20.3. HRMS (ESI), m/z calcd for C₁₈H₁₇NO₃ [M+Na]⁺ 318.1101, found 318.1097.

trans-2-(4-Methoxyphenyl)-6-oxo-1-phenylpiperidine-3-carboxylic acid (7b). Yield 373 mg (65%),

dr 7:1; crystallization from aqueous ethanol afforded pure *trans*-isomer; Colorless solid; Mp 224–225 °C (EtOH-H₂O); ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.49 (br.s, 1H, COOH), 7.27 – 7.20 (m, 4H, 2',6'-H and *m*-Ph), 7.17 – 7.10 (m, 3H, *o*-Ph and *p*-Ph), 6.87 (d, *J* = 8.5 Hz, 2H, 3',5'-H), 5.30 (d, *J* = 4.7 Hz, 1H, 2-H), 3.73 (s, 3H, OCH₃), 2.96 (dt, *J* = 6.2, 4.5 Hz, 1H, 3-H), 2.67 (ddd, *J* = 17.9,

7.0, 5.6 Hz, 1H, 5-H), 2.55 – 2.46 (m, 1H, 5-H), 2.14 – 2.05 (m, 1H, 4-H), 2.04 – 1.96 (m, 1H, 4-H). ¹³C NMR (101 MHz, DMSO- d_6) δ 173.8, 169.1, 159.1, 143.1, 132.9, 128.8, 128.7, 127.9, 126.6, 114.4, 65.4, 55.6, 47.0, 30.5, 20.4. HRMS (ESI), *m/z* calcd for C₁₉H₁₉NO₄ [M+Na]⁺ 348.1206, found 348.1199.

trans/cis-2-(4-Fluorophenyl)-6-oxo-1-phenylpiperidine-3-carboxylic acid (7c). Yield 390 mg

(72%), *dr* 8:1; crystallization from aqueous ethanol afforded *dr* 13:1; Beige solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ for *trans*-isomer: 12.53 (br.s, 1H, COOH), 7.37 – 7.34 (m, 2H, 2',6'-H), 7.27 – 7.23 (m, 2H, *m*-Ph), 7.18 – 7.07 (m, 5H, 3',5'-H, *o*-Ph and *p*-Ph), 5.36 (d, *J* = 5.0 Hz, 1H, 2-H), 3.00 (dt, *J* = 6.4, 4.6 Hz, 1H, 3-H), 2.68 (dt, *J* = 17.9, 6.4 Hz, 1H, 5-H), 2.55 – 2.46 (m, 1H, 5-H), 2.17 – 2.08 (m, 1H,

4-H), 2.05 - 1.96 (m, 1H, 4-H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ for *trans*-isomer: 173.7, 169.0, 161.9 (d, *J* = 243.9 Hz), 142.8, 137.0 (d, *J* = 3.1 Hz), 129.7 (d, *J* = 8.3 Hz), 128.8, 128.0, 126.7, 115.5 (d, *J* = 21.5 Hz), 65.2, 47.0, 30.6, 20.7. HRMS (ESI), *m*/*z* calcd for C₁₈H₁₆FNO₃ [M+Na]⁺ 336.1006, found 336.1009.

trans/cis-6-Oxo-1-phenyl-2-(3-(trifluoromethyl)phenyl)piperidine-3-carboxylic acid (7d). Yield

17.9, 6.6 Hz, 1H, 5-H), 2.56 – 2.48 (m, 1H, 5-H), 2.19 – 2.10 (m, 1H, 4-H), 2.05 – 1.94 (m, 1H, 4-H). ¹³C NMR (101 MHz, DMSO- d_6) δ for *trans*-isomer: 173.8, 169.1, 142.4, 142.2, 132.1, 129.9, 129.5 (q, J = 31.6 Hz), 129.0, 128.1, 126.9, 124.7 (q, J = 3.8 Hz), 124.6 (q, J = 3.8 Hz), 124.5 (q, J = 272.4 Hz), 65.1, 46.6, 30.5, 20.8. HRMS (ESI), *m/z* calcd for C₁₉H₁₆F₃NO₃ [M+Na]⁺ 386.0974, found 386.0967. trans/cis-1-(4-Methoxyphenyl)-6-oxo-2-p-tolylpiperidine-3-carboxylic acid (7e). Yield 413 mg

(70%) *dr* 6.5:1; Beige solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ for *trans*-isomer: 12.48 (br.s, 1H, COOH), 7.19 (d, *J* = 8.3 Hz, 2H, Ar'H), 7.13 (d, *J* = 8.3 Hz, 2H, Ar'H), 7.05 (d, *J* = 8.9 Hz, 2H, Ar"H), 6.80 (d, *J* = 8.9 Hz, 2H, Ar"H), 5.26 (d, *J* = 4.3 Hz, 1H, 2-H), 3.70 (s, 3H, OCH₃), 2.93 (dt, *J* = 6.0, 4.3 Hz, 1H, 3-H), 2.62 (ddd, *J* = 18.0, 6.8, 5.4 Hz, 1H, 5-H), 2.54 – 2.44 (m, 1H, 5-H), 2.27 (s, 3H, 4'-CH₃), 2.13 – 2.04 (m, 1H, 4-H), 2.02 – 1.93 (m, 1H, 4-H). ¹³C NMR (101 MHz,

DMSO-*d*₆) δ for *trans*-isomer: 173.8, 169.1, 157.9, 138.1, 137.0, 135.9, 129.4, 128.9, 127.4, 114.3, 65.9, 55.7, 46.9, 30.4, 20.9, 20.3. HRMS (ESI), *m*/*z* calcd for C₂₀H₂₁NO₄ [M+Na]⁺ 362.1363, found 362.1356.

trans/cis-1-(4-Chlorophenyl)-6-oxo-2-p-tolylpiperidine-3-carboxylic acid (7f). Yield 383 mg (64%)

dr 7:1; Beige solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ for *trans*-isomer:12.49 (br.s, 1H, COOH), 7.29 (d, *J* = 8.7 Hz, 2H, 3",5"-H), 7.19 (d, *J* = 8.0 Hz, 2H, Ar'H), 7.17 (d, *J* = 8.7 Hz, 2H, 2",6"-H), 7.13 (d, *J* = 8.0 Hz, 2H, Ar'H), 5.30 (d, *J* = 4.7 Hz, 1H, 2-H), 2.97 (dt, *J* = 6.1, 4.6 Hz, 1H, 3-H), 2.66 (ddd, *J* = 18.0, 6.9, 5.7 Hz, 1H, 5-H), 2.55 – 2.45 (m, 1H, 5-H), 2.26 (s, 3H, 4'-CH₃), 2.14 – 2.05 (m, 1H, 4-H), 2.04 – 1.94 (m, 1H, 4-H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ for *trans*-isomer:

173.7, 169.2, 141.8, 137.7, 137.2, 131.1, 129.6, 129.5, 128.8, 127.5, 65.5, 46.9, 30.5, 20.9, 20.5. HRMS (ESI), *m/z* calcd for $C_{19}H_{18}CINO_3 [M+Na]^+$ 366.0867, found 366.0867.

trans-2-(3,4-Dimethoxyphenyl)-6-oxo-1-(4-(trifluoromethyl)phenyl)piperidine-3-carboxylic acid

(7g). Crystallization from aqueous ethanol afforded 378 mg (51%) dr 8:1; pure *trans*-isomer was obtained after crystallization from aqueous ethanol; Beige solid; Mp 194–195 °C (EtOH-H₂O); ¹H NMR (400 MHz, DMSO- d_6) δ 12.53 (br.s, 1H, COOH), 7.63 (d, J = 8.5 Hz, 2H, 3",5"-H), 7.43 (d, J = 8.5 Hz, 2H, 2",6"-H), 6.90 (d, J = 2.2 Hz, 1H, 2'-H), 6.88 (d, J = 8.3 Hz, 1H, 5'-H), 6.83 (dd, J = 8.3, 2.2 Hz, 1H, 6'-H), 5.36 (d, J = 4.7 Hz, 1H, 2-H), 3.75 (s, 3H, OCH₃),

3.73 (s, 3H, OCH₃), 3.06 (dt, J = 6.2, 4.5 Hz, 1H, 3-H), 2.70 (ddd, J = 18.1, 6.9, 5.6 Hz, 1H, 5-H), 2.56 – 2.47 (m, 1H, 5-H), 2.17 – 2.07 (m, 1H, 4-H), 2.06 – 1.97 (m, 1H, 4-H). ¹³C NMR (101 MHz, DMSO- d_6) δ 173.8, 169.4, 149.7, 149.1, 146.6, 133.0, 128.5, 127.1 (q, J = 32.0 Hz), 125.9 (q, J = 3.7 Hz), 124.5 (q, J = 272.0 Hz), 119.9, 112.8, 112.1, 65.1, 56.4, 56.3, 46.8, 30.5, 20.5. HRMS (ESI), m/z calcd for C₂₁H₂₀F₃NO₅ [M+Na]⁺ 446.1186, found 446.1197.

trans-2-(4-(Methoxycarbonyl)phenyl)-6-oxo-1-p-tolylpiperidine-3-carboxylic acid (7h). Yield

465 mg (74%), dr 6:1; pure trans-isomer was obtained after crystallization from aqueous ethanol; Beige solid; Mp 230–231 °C (EtOH-H₂O); ¹H NMR (400 MHz, DMSO-d₆) δ 12.57 (br.s, 1H, COOH), 7.90 (d, J = 8.2 Hz, 2H, 3',5'-H), 7.48 (d, J = 8.2 Hz, 2H, 2',6'-H), 7.05 (s, 4H, Ar"H), 5.41 (d, J = 4.6 Hz, 1H, 2-H), 3.85 (s, 3H, CO₂CH₃), 3.01 (dt, J = 6.2, 4.5 Hz, 1H, 3-H), 2.67 (ddd, J = 17.9, 6.8, 5.6 Hz, 1H, 5-H), 2.55 – 2.46 (m, 1H, 5-H), 2.21 (s, 3H, 4"-CH₃),

2.17 – 2.07 (m, 1H, 4-H), 2.03 – 1.93 (m, 1H, 4-H). ¹³C NMR (101 MHz, DMSO- d_6) δ 173.5, 169.1, 166.4, 146.4, 140.2, 136.1, 129.7, 129.5, 129.4, 128.1, 127.7, 65.7, 52.4, 46.7, 30.5, 20.8, 20.5. HRMS (ESI), *m/z* calcd for C₂₁H₂₁NO₅ [M+Na]⁺ 390.1312, found 390.1311.

trans-2-(2-Chlorophenyl)-6-oxo-1-p-tolylpiperidine-3-carboxylic acid (7i). Yield 486 mg (80%), dr

principle of the priority of

2.08 (m, 1H, 4-H), 2.01 – 1.90 (m, 1H, 4-H). ¹³C NMR (101 MHz, DMSO- d_6) δ 173.5, 169.1, 140.4, 137.7, 136.3, 132.1, 130.3, 129.81, 129.80, 129.5, 127.7, 127.4, 63.1, 43.8, 30.0, 20.9, 19.7. HRMS (ESI), *m/z* calcd for C₁₉H₁₈ClNO₃ [M+Na]⁺ 366.0867, found 366.0869.

trans/cis-6-Oxo-2-(thiophen-3-yl)-1-p-tolylpiperidine-3-carboxylic acid (7j). Yield 353 mg (64%),

dr 4:1; crystallization from aqueous ethanol afforded *dr* 8:1; Beige solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ for *trans*-isomer: 12.52 (br.s, 1H, COOH), 7.45 (dd, *J* = 5.0, 3.0 Hz, 1H, 4'-H), 7.35 (ddd, *J* = 3.0, 1.4, 0.8 Hz, 1H, 2'-H), 7.10 – 7.05 (m, 5H, 5'-H and Ar"H), 5.40 (d, *J* = 4.1 Hz, 1H, 2-H), 3.85 (s, 3H, CO₂CH₃), 3.03 (dt, *J* = 5.5, 4.3 Hz, 1H, 3-H), 2.59 (ddd, *J* = 17.9, 7.2, 4.9 Hz, 1H, 5-H), 2.53 – 2.42 (m, 1H, 5-H), 2.25 (s, 3H, 4"-CH₃), 2.16 – 2.06 (m, 1H, 4-H), 2.05 – 1.94 (m, 1H, 4-H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ for *trans*-isomer: 173.7, 168.7, 142.6,

140.6, 135.9, 129.3, 127.5, 127.1, 127.0, 123.2, 62.2, 46.0, 30.2, 20.9, 20.4. HRMS (ESI), m/z calcd for C₁₇H₁₇NO₃S [M+Na]⁺ 338.0821, found 338.0828.

trans/cis-1,2-Bis(4-methoxyphenyl)-6-oxopiperidine-3-carboxylic acid (7k). Yield 444 mg (72%),

dr 6:1; Beige solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ for *trans*-isomer: 12.43 (br.s, 1H, COOH), 7.21 (d, *J* = 8.6 Hz, 2H, 2',6'-H), 7.04 (d, *J* = 8.9 Hz, 2H, Ar"H), 6.87 (d, *J* = 8.6 Hz, 2H, 3',5'-H), 6.80 (d, *J* = 8.9 Hz, 2H, Ar"H), 5.23 (d, *J* = 4.6 Hz, 1H, 2-H), 3.74 (s, 3H, 4'-OCH₃), 3.70 (s, 3H, 4"-OCH₃), 2.93 (dt, *J* = 6.1, 4.5 Hz, 1H, 3-H), 2.62 (ddd, *J* = 17.9, 6.9, 5.5 Hz, 1H, 5-H), 2.53 – 2.43 (m, 1H, 5-H), 2.12 – 2.04 (m, 1H, 4-H), 2.03 – 1.94 (m, 1H, 4-H). ¹³C NMR (101

MHz, DMSO- d_6) δ for *trans*-isomer: 173.8, 169.1, 159.1, 157.9, 135.9, 133.0, 128.9, 128.7, 114.4, 114.3, 65.6, 55.7, 55.6, 47.0, 30.5, 20.5. HRMS (ESI), *m/z* calcd for C₂₀H₂₁NO₅ [M-H]⁻ 354.1336, found 354.1345.

trans-1-(3-(Methoxycarbonyl)phenyl)-2-(4-nitrophenyl)-6-oxopiperidine-3-carboxylic acid (7l).

Yield 387 mg (56%), *dr* 6:1; pure *trans*-isomer was obtained after crystallization from aqueous ethanol; Beige solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.64 (br.s, 1H, COOH), 8.13 (d, *J* = 8.8 Hz, 2H, 3',5'-H), 7.83 (t, *J* = 2.0 Hz, 1H, 2"-H), 7.73 (dt, *J* = 7.5, 1.5 Hz, 1H, 6"-H), 7.67 (d, *J* = 8.8 Hz, 2H, 2',6'-H), 7.46 (ddd, *J* = 8.0, 2.2, 1.5 Hz, 1H, 4"-H). 7.40 (t, *J* = 7.9 Hz, 1H, 5"-H), 5.58 (d, *J* = 5.1 Hz, 1H, 1H), 7.40 (t, *J* = 7.9 Hz, 1H, 5"-H), 5.58 (d, *J* = 5.1 Hz, 1H, 5"-H), 7.58 (d, *J* = 5.1 Hz, 1H), 7.50 (d, *J* = 8.0, 2.2, 1.5 Hz, 1H, 4"-H).

2-H), 3.84 (s, 3H, CO₂CH₃), 3.10 (ddd, J = 6.8, 5.1, 4.1 Hz, 1H, 3-H), 2.76 (dt, J = 17.9, 6.5 Hz, 1H, 5-H), 2.58 – 2.47 (m, 1H, 5-H), 2.24 – 2.14 (m, 1H, 4-H), 2.08 – 1.98 (m, 1H, 4-H). ¹³C NMR (101 MHz, DMSO- d_6) δ 173.3, 169.3, 166.1, 148.2, 147.6, 142.8, 132.7, 130.9, 129.4, 129.3, 128.8, 127.6, 123.9, 65.2, 52.5, 46.6, 30.6, 20.8. HRMS (ESI), *m*/*z* calcd for C₂₀H₁₈N₂O₇ [M-H]⁻ 397.1030, found 397.1045.

trans-1-(3,5-Bis(trifluoromethyl)phenyl)-2-(2,4-dimethoxyphenyl)-6-oxopiperidine-3-carboxylic

acid (7m). Method B: yield 502 mg (59%); Beige solid; Mp 234–235 °C (EtOH-H₂O); ¹H NMR (400 MHz, DMSO- d_6) δ 12.81 (br.s, 1H, COOH), 7.79 (s, 1H, 4"-H), 7.76 (s, 2H, 2",6"-H), 7.19 (d, J = 8.3 Hz, 1H, 6'-H), 6.47 (dd, J = 8.3, 2.2 Hz, 1H, 5'-H), 6.45 (d, J = 2.2 Hz, 1H, 3'-H), 5.55 (d, J = 6.4 Hz, 1H, 2-H), 3.71 (s, 6H, 2'-OCH₃ and 4'-OCH₃), 3.12 (ddd, J = 7.9, 6.4, 4.1 Hz, 1H),

2.70 (ddd, J = 17.9, 7.9, 6.6 Hz, 1H), 2.58 – 2.51 (m, 1H, 5-H) 2.23 – 2.13 (m, 1H, 4-H), 2.11 – 2.04 (m, 1H, 4-H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 173.9, 169.9, 161.1, 157.9, 144.5, 130.86 (q, J = 33.2 Hz), 129.9, 128.9 (q, J = 4.8 Hz), 123.4 (q, J = 272.7 Hz), 120.2 – 119.8 (m), 119.3, 105.7, 99.3, 61.0, 56.0, 55.7, 45.0, 31.0, 22.0. HRMS (ESI), *m*/*z* calcd for C₂₂H₁₉FNO₅ [M+H]⁺ 492.1240, found 492.1252.

trans/cis-2-(4-Chlorophenyl)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-6-oxopiperidine-3-carboxylic

acid (7n). Yield 601 mg (89%), dr 5:1; Beige solid; ¹H NMR (400 MHz, DMSOd₆) δ for *trans*-isomer: 12.51 (br.s, 1H, COOH), 7.40 – 7.32 (m, 4H, ArH'), 6.71 (d, J = 8.6 Hz, 1H, 5"-H), 6.65 (d, J = 2.3 Hz, 1H, 2"-H), 6.60 (dd, J = 8.5, 2.3 Hz, 1H, 6"-H), 5.28 (d, J = 4.5 Hz, 1H, 2-H), 4.18 (s, 4H, OCH₂CH₂O), 2.94 (dt, J = 5.6, 4.5 Hz, 1H, 3-H), 2.69 – 2.57 (m, 1H, 5-H), 2.54 – 2.41 (m, 1H, 5-H), 2.16 – 2.01 (m, 1H, 4-H), 2.01 – 1.86 (m, 1H, 4-H). ¹³C NMR (101 MHz, DMSO-d₆) δ for

trans-isomer: 173.6, 169.1, 143.4, 142.4, 140.1, 136.1, 132.6, 129.5, 128.8, 120.7, 116.9, 116.9, 65.4, 64.5, 64.5, 46.6, 30.3, 20.2. HRMS (ESI), m/z calcd for $C_{20}H_{18}CINO_5$ [M+Na]⁺ 410.0766, found 410.0762.

trans/cis-1,2-Bis(4-fluorophenyl)-6-oxopiperidine-3-carboxylic acid (70). Yield 419 mg (73%), dr

6:1; Beige solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ for *trans*-isomer: 12.49 (br.s, 1H, COOH), 7.35 (dd, J = 8.8, 5.3 Hz, 2H), 7.16 (dd, J = 9.0, 5.1 Hz, 2H), 7.10 (t, J = 8.8 Hz, 2H), 7.05 (t, J = 8.9 Hz, 2H), 5.31 (d, J = 5.3 Hz, 1H, 2-H), 3.00 (ddd, J = 6.9, 5.3, 4.2 Hz, 1H, 3-H), 2.69 (dt, J = 17.8, 6.6 Hz, 1H, 5-H), 2.55 – 2.45 (m, 1H, 5-H), 2.17 – 2.08 (m, 1H, 4-H), 2.07 – 1.98 (m, 1H, 4-H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ for *trans*-isomer: 173.6, 169.2, 162.5 (d, J = 128.2 Hz), 160.1

(d, J = 127.6 Hz), 138.9 (d, J = 3.1 Hz), 136.8 (d, J = 3.0 Hz), 130.1 (d, J = 8.6 Hz), 129.9 (d, J = 8.3 Hz), 115.7 (d, J = 0.8 Hz), 115.5 (d, J = 2.0 Hz), 65.4, 47.0, 30.6, 20.9. HRMS (ESI),*m/z*calcd for C₁₈H₁₅F₂NO₃ [M-H]⁻ 330.0936, found 330.0948.

trans-4,4-Dimethyl-6-oxo-1,2-diphenylpiperidine-3-carboxylic acid (8a). Yield 222 mg (69%), dr

4:1; pure *trans*-isomer was obtained after crystallization from aqueous ethanol; Colorless solid; Mp 287–288 °C (EtOH-H₂O); ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.41 (br.s, 1H, COOH), 7.27 – 7.08 (m, 7H, ArH), 7.06 – 7.00 (m, 3H, ArH), 5.10 (d, *J* = 11.0 Hz, 1H, 2-H), 2.99 (d, *J* = 11.0 Hz, 1H, 3-H), 2.82 (d, *J* = 16.5 Hz, 1H, 5-H), 2.27 (d, *J* = 16.5 Hz, 1H, 5-H), 1.27 (s, 3H, 4-CH₃), 1.09 (s, 3H, 4-CH₃). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 172.5, 168.9, 141.2, 140.1, 128.74, 128.73,

128.72, 128.5, 128.0, 126.7, 64.6, 58.2, 47.5, 33.1, 28.8, 21.3. HRMS (ESI), m/z calcd for C₂₀H₂₁NO₃ [M+H]⁺ 324.1594, found 324.1612.

trans/cis-1-(4-Chlorophenyl)-4,4-dimethyl-6-oxo-2-(p-tolyl)piperidine-3-carboxylic acid (8b).

Yield 133 mg (36%), dr 5:1; crystallization from aqueous ethanol afforded dr 7:1; Colorless solid; ¹H NMR (400 MHz, DMSO- d_6) δ for *trans*-isomer: 12.37 (br.s, 1H, COOH), 7.22 (d, J = 8.7 Hz, 2H, 2",6"-H), 7.11 (d, J = 8.0 Hz, 2H, 2',6'-H), 7.07 (d, J = 8.7 Hz, 2H, 3",5"-H), 6.99 (d, J = 8.0 Hz, 2H, 3',5'-H), 5.06 (d, J = 11.0 Hz, 1H, 2-H), 2.96 (d, J = 11.0 Hz, 1H, 3-H), 2.81 (d, J = 16.5 Hz, 1H, 5-H), 2.18 (s, 3H, 4'-CH₃), 1.24 (s, 3H, 4-CH₃), 1.07 (s, 3H, 4-CH₃); signals of *cis*-isomer: 5.52 (d, J = 5.6 Hz, 1H, 2-H),

3.04 (d, J = 17.1 Hz, 1H, 5-H), 2.16 (s, 3H, 4'-CH₃), 1.32 (s, 3H, 4-CH₃), 1.03 (s, 3H, 4-CH₃). ¹³C NMR (101 MHz, DMSO-*d*₆) δ for *trans*-isomer: 172.4, 169.1, 140.2, 137.2, 136.8, 130.9, 130.5, 129.2, 128.7, 128.6, 64.0, 58.1, 47.4, 33.0, 28.7, 21.3, 21.1. HRMS (ESI), *m/z* calcd for C₂₁H₂₂ClNO₃ [M+H]⁺ 394.1180, found 394.1196.

trans/cis-1,2-Bis(4-fluorophenyl)-4,4-dimethyl-6-oxopiperidine-3-carboxylic acid (8c). Yield

208 mg (58%), *dr* 4:1; Colorless solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ for *trans*-isomer: 12.42 (br.s, 1H, COOH), 7.32 – 7.21 (m, 2H, ArH), 7.10 – 6.94 (m, 6H, ArH), 5.10 (d, *J* = 11.1 Hz, 1H, 2-H), 3.02 (d, *J* = 11.1 Hz, 1H, 3-H), 2.82 (d, *J* = 16.6 Hz, 1H, 5-H), 2.27 (d, *J* = 16.6 Hz, 1H, 5-H), 1.26 (s, 3H, 4-CH₃), 1.09 (s, 3H, 4-CH₃); signals of *cis*-isomer: 5.58 (d, *J* = 5.7 Hz, 1H, 2-H), 3.06 (d, *J* = 17.0 Hz, 1H, 5-H), 2.86 (dd, *J* = 5.7, 1.6 Hz, 1H, 3-H), 2.16 (dd, *J* = 17.0, 1.6 Hz, 1H, 5-H), 1.33 (s, 3H, 4-CH₃), 1.04 (s, 3H, 4-CH₃). ¹³C NMR (101 MHz, DMSO-

 d_6) δ for *trans*-isomer: 172.4, 169.1, 161.8 (d, J = 243.9 Hz), 160.5 (d, J = 243.2 Hz), 137.3 (d, J = 2.9 Hz), 136.1 (d, J = 3.0 Hz), 131.0 (d, J = 8.3 Hz), 130.7 (d, J = 8.6 Hz), 115.6 (d, J = 16.9 Hz), 115.4 (d, J = 15.8 Hz), 63.8, 57.9, 47.4, 33.0, 28.7, 21.4; signals of *cis*-isomer: 173.0, 170.6, 162.5 (d, J = 243.5 Hz), 161.44 (d, J = 243.2 Hz), 137.5 (d, J = 2.9 Hz), 134.6 (d, J = 3.2 Hz), 130.1 (d, J = 8.6 Hz), 114.9 (d, J = 21.3 Hz), 61.0, 56.3, 42.5, 32.2, 28.2, 27.7. HRMS (ESI), *m*/*z* calcd for C₂₀H₁₉F₂NO₃ [M+Na]⁺ 382.1225, found 382.1227.

trans-2-(4-Chlorophenyl)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-4,4-dimethyl-6-oxopiperidine-

3-carboxylic acid (8d). Yield 207 mg (50%), *dr* 7:1; pure *trans*-isomer was obtained after crystallization from aqueous ethanol; Colorless solid; Mp 295–296 °C (EtOH-H₂O); ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.45 (br.s, 1H, COOH), 7.30 – 7.22 (m, 4H, ArH'), 6.65 (d, *J* = 9.0 Hz, 1H, 5"-H), 6.52 – 6.46 (m, 2H, 2"-H and 6"-H), 5.01 (d, *J* = 11.0 Hz, 1H, 2-H), 4.17 – 4.10 (m, 4H, OCH₂CH₂O), 2.92 (d, *J* = 11.0 Hz, 1H, 3-H), 2.77 (d, *J* = 16.5 Hz, 1H, 5-H), 2.24 (d, *J* = 16.5 Hz, 1H, 5-H), 1.22 (s, 3H, 4-CH₃), 1.06 (s, 3H, 4-CH₃). ¹³C NMR

(101 MHz, DMSO- d_6) δ 172.3, 169.1, 143.2, 142.1, 139.4, 134.2, 132.5, 130.6, 128.6, 121.3, 117.6, 116.9, 64.3, 64.0, 58.1, 47.4, 33.1, 28.7, 21.3. HRMS (ESI), m/z calcd for C₂₂H₂₂ClNO₅ [M+Na]⁺ 438.1079, found 438.1064.

trans-8-(4-Methoxyphenyl)-9-oxo-7-(p-tolyl)-8-azaspiro[4.5]decane-6-carboxylic acid (9a). Yield

219 mg (63%), dr 4:1; pure trans-isomer was obtained after crystallization from aqueous ethanol; Colorless solid; Mp >300 °C (EtOH-H₂O); ¹H NMR (400 MHz, DMSO-d₆) δ 12.45 (br.s, 1H, COOH), 7.08 (d, J = 8.0 Hz, 2H, 2',6'-H), 6.99 (d, J = 8.0 Hz, 2H, 3',5'-H), 6.87 (d, J = 8.9 Hz, 2H, 2",6"-H), 6.71 (d, J = 8.9 Hz, 2H, 3",5"-H), 4.96 (d, J = 10.8 Hz, 1H, 7-H), 3.65 (s, 3H, OCH₃), 3.11 (d, J = 10.8 Hz, 1H, 6-H), 2.74 (d, J = 16.5 Hz, 1H, 10-H), 2.40 (d, J = 16.5 Hz, 1H, 10-H), 2.34 – 2.25 (m, 1H), 2.19 (s, 3H, 4'-CH₃), 1.81 – 1.60 (m, 4H), 1.59 –

1.38 (m, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 172.9, 169.2, 157.6, 137.4, 137.0, 134.0, 129.7, 129.2, 128.5, 114.0, 65.4, 57.0, 55.5, 46.3, 43.8, 37.4, 30.1, 24.9, 24.7, 21.1. HRMS (ESI), m/z calcd for C₂₄H₂₇NO₄ [M+K]⁺ 432.1572, found 432.1579.

trans/cis-7-(2-Chlorophenyl)-9-oxo-8-(p-tolyl)-8-azaspiro[4.5]decane-6-carboxylic acid (9b). Yield

238 mg (60%) *dr* 3:1; Colorless solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ for *trans*isomer: 12.07 (br.s, 1H, COOH), 7.47 – 7.37 (m, 1H, 6'-H), 7.29 – 7.15 (m, 3H, ArH'), 6.99 (d, *J* = 8.3 Hz, 2H, 2",6"-H), 6.89 (d, *J* = 8.3 Hz, 2H, 3",5"-H), 5.52 (d, *J* = 10.0 Hz, 1H, 7-H), 3.34 (d, *J* = 10.0 Hz, 1H, 6-H), 2.69 (d, *J* = 16.5 Hz, 1H, 10-H), 2.48 (d, *J* = 16.5 Hz, 1H, 10-H), 2.42 – 2.31 (m, 1H), 2.20 (s, 3H, 4"-CH₃), 1.85 – 1.46 (m, 7H); signals of *cis*-isomer: 5.85 (d, *J* = 5.8 Hz, 1H, 7-H), 3.20 (d, *J* = 17.0 Hz, 1H, 10-H), 3.04 (dd, *J* = 5.8, 1.9 Hz, 1H, 6-H), 2.18 (s, 3H, 4"-CH₃). ¹³C NMR (101 MHz, DMSO-*d*₆) δ for *trans*-isomer: 172.4, 169.0, 138.7, 137.3,

136.2, 131.5, 130.3, 129.8, 129.2, 129.1, 128.0, 127.52, 127.48, 55.2, 46.6, 44.4, 37.9, 31.1, 25.0, 24.6, 20.8. HRMS (ESI), *m/z* calcd for C₂₃H₂₄ClNO₃ [M+H]⁺ 398.1517, found 398.1522.

trans/cis-9-Oxo-7-(thiophen-3-yl)-8-(p-tolyl)-8-azaspiro[4.5]decane-6-carboxylic acid (9c). Yield

110 mg (30%) *dr* 2:1; Colorless solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ for *trans*isomer: 12.17 (br.s, 1H, COOH), 7.32 (dd, *J* = 5.0, 2.9 Hz, 1H, 4'-H), 7.10 (dd, *J* = 2.9, 1.0 Hz, 1H, 2'-H), 7.04 – 6.95 (m, 3H, 5'-H and 2",6"-H), 6.85 (d, *J* = 8.2 Hz, 2H, 3",5"-H), 5.17 (d, *J* = 10.3 Hz, 1H, 7-H), 3.20 (d, *J* = 10.3 Hz, 1H, 6-H), 2.67 (d, *J* = 16.5 Hz, 1H, 10-H), 2.42 (d, *J* = 16.5 Hz, 1H, 10-H), 2.31 – 2.22 (m, 1H), 2.22 (s, 3H, 4"-CH₃), 1.85 – 1.44 (m, 7H); signals of *cis*-isomer: 5.54 (d, *J* = 5.6 Hz, 1H, 7-H), 3.01 (d, *J* = 17.0 Hz, 1H, 10-H), 2.90 (dd, *J* = 5.8, 1.6 Hz, 1H, 6-H), 2.19 (s, 3H, 4"-CH₃). ¹³C NMR (101 MHz, DMSO-*d*₆) δ for *trans*-isomer: 172.8,

168.7, 141.7, 139.0, 135.9, 129.2, 128.3, 127.4, 126.4, 124.3, 61.1, 56.5, 46.6, 44.0, 37.7, 30.6, 25.0, 24.6, 20.9; signals of *cis*-isomer: 173.1, 169.9, 140.0, 139.2, 135.3, 128.9, 128.5, 128.1, 125.1, 124.4, 59.0, 55.4, 43.3, 41.4, 38.0, 37.5, 23.9, 23.8, 20.9. HRMS (ESI), *m/z* calcd for $C_{21}H_{23}NO_3S$ [M+Na]⁺ 392.1291, found 392.1294.

trans/cis-9-Oxo-7,8-diphenyl-8-azaspiro[4.5]decane-6-carboxylic acid (9d). Yield 286 mg (82%),

dr 5:1; Colorless solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ for *trans*-isomer: 12.20 (br.s, 1H, COOH), 7.24 – 7.09 (m, 7H, ArH), 7.06 (t, *J* = 7.5 Hz, 1H, *p*-Ph), 6.99 (d, *J* = 7.5 Hz, 2H, *o*-Ph), 5.12 (d, *J* = 10.5 Hz, 1H, 7-H), 3.18 (d, *J* = 10.5 Hz, 1H, 6-H), 2.76 (d, *J* = 16.5 Hz, 1H, 10-H), 2.47 (d, *J* = 16.5 Hz, 1H, 10-H), 2.40 – 2.29 (m, 1H), 1.87 – 1.45 (m, 7H); signals of *cis*-isomer: 5.49 (d, *J* = 5.7 Hz, 1H, 7-H), 3.13 (d, *J* = 17.0 Hz, 1H, 10-H), 2.94 (dd, *J* = 5.7, 1.5 Hz, 1H, 6-H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ for *trans*-isomer: 172.7, 169.0, 141.6, 140.4, 128.7, 128.66,

128.65, 128. 6, 127.9, 126.6, 65.7, 57.2, 46.7, 44.1, 37.7, 30.5, 25.0, 24.6; signals of *cis*-isomer: 172.8, 170.4, 141.8, 138.6, 128.9, 128.3, 128.3, 127.9, 127.4, 126.0, 63.0, 55.9, 43.5, 41.2, 38.1, 37.4), 24.0, 23.8. HRMS (ESI), *m/z* calcd for C₂₂H₂₃NO₃ [M+Na]⁺ 372.1570, found 372.1564.

3. Crystallographic data for compounds 7a, 7i and 8a

X-ray Single Crystal analyses were performed on Agilent Technologies Xcalibur Eos and Agilent Technologies (Oxford Diffraction) «Supernova» diffractometers. Using Olex2 [2], structures were solved with the Superflip [3] structure solution program using Charge Flipping and refined with the ShelXL [4] refinement package using Least Squares minimisation. CCDC 1470615, 1470616, 1470618 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk.

Table S2.	Crystal da	ta and st	ructure ref	inement for	7a, 7	i and 8a
	· · · · · ·				-)	

Identification code	7a	7i	8 a
Empirical formula	C ₁₈ H ₁₇ NO ₃	C ₁₉ H ₁₈ ClNO ₃	$C_{20}H_{21}NO_{3}$
Formula weight	295.32	343.79	323.38
Temperature/K	100(2)	100(2)	100(2)
Crystal system	monoclinic	monoclinic	monoclinic
Space group	P2 ₁ /c	P2 ₁ /c	P2 ₁ /c
a/Å	9.2973(3)	10.15491(19)	6.1741(3)
b/Å	9.6961(3)	11.7971(2)	22.3708(7)
c/Å	17.2808(6)	14.1333(3)	12.6253(4)
β/°	110.402(3)	97.8247(17)	103.267(4)
Volume/Å ³	1460.10(9)	1677.37(5)	1697.25(11)
Z	4	4	4
$ ho_{calc}g/cm^3$	1.343	1.361	1.266
μ/mm^{-1}	0.744	0.244	0.085
F(000)	624.0	720.0	688.0
Crystal size/mm ³	0.1 imes 0.1 imes 0.1	0.3 imes 0.3 imes 0.25	$0.25\times0.25\times0.15$
Radiation	$CuK\alpha (\lambda = 1.54184)$	MoK α ($\lambda = 0.71073$)	MoK α (λ = 0.71073)
20 range for data collection/°	10.15 to 149.95	5.322 to 55	6.392 to 54.998
Index ranges	$-11 \le h \le 11, -11 \le k \le 12, -20 \le 1 \le 21$	$-13 \le h \le 13, -15 \le k \le 15, -18 \le 1 \le 18$	$-3 \le h \le 8, -26 \le k \le 29, -16$ $\le 1 \le 13$
Reflections collected	9351	28349	7371
Independent reflections	2995 [$R_{int} = 0.0406, R_{sigma} = 0.0362$]	$3845 [R_{int} = 0.0327, R_{sigma} = 0.0168]$	$3881 [R_{int} = 0.0197, R_{sigma} = 0.0362]$
Data/restraints/parameters	2995/0/199	3845/0/219	3881/0/219
Goodness-of-fit on F ²	1.034	1.028	1.031
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0431, wR_2 = 0.1103$	$R_1 = 0.0322, wR_2 = 0.0811$	$R_1 = 0.0436, wR_2 = 0.0941$
Final R indexes [all data]	$R_1 = 0.0511, WR_2 = 0.1185$	$R_1 = 0.0361, WR_2 = 0.0840$	$R_1 = 0.0583, WR_2 = 0.1009$
Largest diff. peak/hole / e Å ⁻ $_{3}$	0.55/-0.25	0.38/-0.31	0.34/-0.20
CCDC	1470616	1470618	1470615

4. References:

- 1. Tabcheh, M.; Baroudi, M.; Elomar, F.; Elzant, A.; Elkhatib, M.; Rolland, V. Asian J. Chem., 2006, 18(3), 1771–1782.
- 2. Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. J. Appl. Cryst., 2009, 42, 339–341.
- Palatinus, L.; Chapuis, G. J. Appl. Cryst., 2007, 40, 786–790; Palatinus, L.; van der Lee, A. J. Appl. Cryst., 2008, 41, 975–984; Palatinus, L.; Prathapa, S. J.; van Smaalen, S. J. Appl. Cryst., 2012, 45, 575–580.
- 4. Sheldrick, G.M. Acta Cryst., 2015, C71, 3-8.

¹H and ¹³C NMR spectra of compound 6c

¹H and ¹³C NMR spectra of compound 6h

¹H and ¹³C NMR spectra of compound 6i

¹H and ¹³C NMR spectra of compound 6k

¹H and ¹³C NMR spectra of compound 6l

¹H and ¹³C NMR spectra of compound 7a

¹H and ¹³C NMR spectra of compound 7c

¹H and ¹³C NMR spectra of compound 7d

¹H and ¹³C NMR spectra of compound 7e

¹H and ¹³C NMR spectra of compound 7f

¹H and ¹³C NMR spectra of compound 7h

¹H and ¹³C NMR spectra of compound 7i

¹H and ¹³C NMR spectra of compound 7j

¹H and ¹³C NMR spectra of compound 7l

¹H and ¹³C NMR spectra of compound 70

¹H and ¹³C NMR spectra of compound 8a

¹H and ¹³C NMR spectra of compound 8c

¹H and ¹³C NMR spectra of compound 8d

¹H and ¹³C NMR spectra of compound 9a

¹H and ¹³C NMR spectra of compound 9b

¹H and ¹³C NMR spectra of compound 9c

¹H and ¹³C NMR spectra of compound 9d

