Supporting Information

Amorphous NiB/Carbon Nanohybrids: Synthesis and Catalytic Enhancement Induced by Electron Transfer

Weikai Liu,^a Ruifen Chen,^a Lijun Liu,^{*a} Shuangzhi Li,^a Zhiyong Xue^{*a} and Chiyang He^a

^a College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073,

People's Republic of China

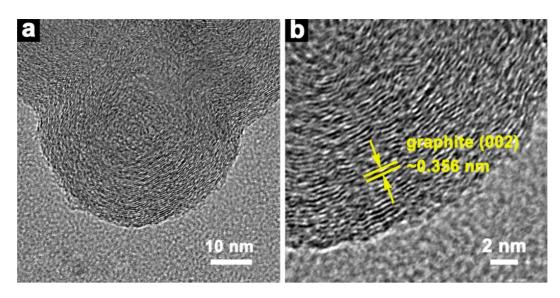
* To whom correspondence should be addressed.

Lijun Liu: E-mail: eduliu@163.com; Tel: +86-27-59367685

Zhiyong Xue: E-mail: xuezhiyong@wtu.edu.cn; Tel: +86-27-59367685

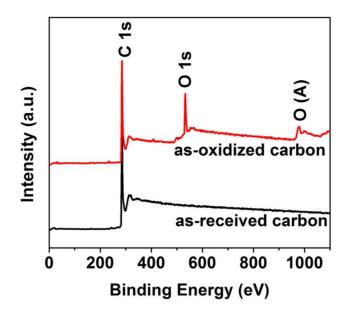
Discussion of FTIR results

In this work, we have observed the so-called strong metal-support interaction (SMSI) effect in the NiB/C catalyst, which is manifested by the charge transfer between metal and carbon support. It is suggested oxygen-containing surface groups on carbon supports (e.g., carbon nanotube, graphene) could induce the charge transfer between metal and support.¹ As a result, we have carefully investigated the change of these surface groups on the carbon by FTIR.


The FTIR spectra show the adsorption band of carboxylic C=O group on the carbon is positively shifted after coupling with NiB alloy.

Generally, the vibration frequency of a chemical bond is determined as follows:

$$\nu = \frac{1}{2\pi c_{\rm v}} \sqrt{\frac{\kappa}{\mu}} \tag{eq. 1}$$


where *v* is the vibration frequency, κ is the force constant, and μ is the reduced mass, $\mu = m_1 m_2$ /($m_1 + m_2$), where m_1 and m_2 are the component masses for the chemical bond.

The vibration frequency will positively shift when the force constant (κ) of a chemical bond is increased. Therefore, the positive shift of v(C=O) indicates an enhancement of C=O bond strength, which could be caused by the electron transfer from Ni species to oxygen-containing groups due to the electronegative difference between Ni and O element. Such electron transfer can increase the electron density of C=O bonds and lead to a positive shift of v(C=O) as shown in Fig. 4 (see Manuscript). Thus, we believe this could be another fact to prove the strong interaction between NiB and C support.

Fig. S1. (a) TEM and (B) HRTEM images of the graphite carbon NP. The image clearly shows the slightly-distorted lattice fringes with an interplanar distance of 0.356 nm corresponding to the

(002) facets of graphite carbon.

Fig. S2. The survey XPS spectra of as-received and as-oxidized carbon NPs. Both samples contain carbon and oxygen elements with a carbon/oxygen atomic ratio of 0.9/0.1 for as-received

carbon and 0.7/0.3 for as-oxidized carbon, respectively.

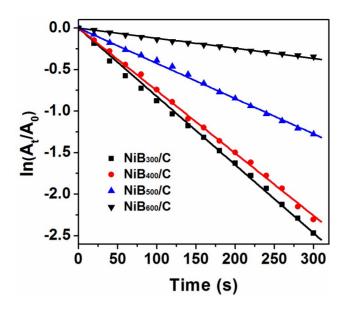
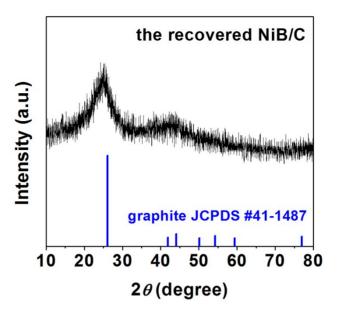



Fig. S3. The plots of $\ln(A_t/A_0)$ versus reaction time for the 4-NP reduction over the crystalline NiB/C catalysts obtained by calcining the amorphous NiB/C at various temperatures.

Fig. S4. The XRD pattern of NiB/C after five times of cycling uses, which shows that the NiB/C still shows diffractions belonging to graphite carbon. No phase change is observed after

cycling uses.

Table S1 Comparison of the normalized rate constants ($k_n = k / m_{metal}$) of NiB/C with the prior catalysts reported for the 4-NP reduction with NaBH₄.

catalysts		$k_{\rm n}{}^a$	roforonoog
active metals	supports	$(s^{-1} \cdot mg^{-1})$	references
Raney® Ni	_	0.0370	2
NiPt NPs	_	0.5735	2
crystalline Ni NPs	СВ	0.0452	3
crystalline Ni NPs	SiO ₂	0.0910	4
crystalline Ni NPs	rGO	0.6093	5
Au NPs	GO/CNT	0.1136	6
Au shell	C nanofibers (core)	0.2390	7
Pd NPs	rGO	2.350	8
amorphous NiB	СВ	3.640	this work

^{*a*} $k_{\rm n}$ is the normalized reaction rate constant, $k_{\rm n} = k / m_{\rm metal}$.

References

- 1. P. Serp, M. Corrias and P. Kalck, Appl. Catal., A, 2003, 253, 337-358.
- 2. S. K. Ghosh, M. Mandal, S. Kundu, S. Nath and T. Pal, Appl. Catal., A, 2004, 268, 61-66.
- 3. J. W. Xia, G. Y. He, L. L. Zhang, X. Q. Sun and X. Wang, Appl. Catal., B, 2016, 180, 408-415.
- 4. S. Zhang, S. Gai, F. He, S. Ding, L. Li and P. Yang, Nanoscale, 2014, 6, 11181-11188.
- 5. C.-C. Yeh and D.-H. Chen, Appl. Catal., B, 2014, 150, 298-304.
- F. Yang, C. Wang, L. Wang, C. Liu, A. Feng, X. Liu, C. Chi, X. Jia, L. Zhang and Y. Li, *RSC Adv.*, 2015, 5, 37710-37715.
- P. Zhang, C. Shao, X. Li, M. Zhang, X. Zhang, C. Su, N. Lu, K. Wang and Y. Liu, *PCCP*, 2013, 15, 10453-10458.
- 8. Z. Wang, C. Xu, G. Gao and X. Li, RSC Advances, 2014, 4, 13644-13651.