Supporting Information

## Three-dimensional NiCo<sub>2</sub>O<sub>4</sub>/NiCo<sub>2</sub>S<sub>4</sub> Hybrid Nanostructures on

## Ni-foam as High-performance Supercapacitor Electrode

Shipra Raj,<sup>1</sup> Suneel Kumar Srivastava,<sup>2</sup> Pradip Kar<sup>1</sup> and Poulomi Roy<sup>1\*</sup>

<sup>1</sup>Department of Chemistry, Birla Institute of Technology Mesra, Ranchi 835215, Jharkhand, India

<sup>2</sup>Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India

## \*Email: poulomiroy@yahoo.com



Figure S1: Growth process of NiCo-hydroxide precursor deposition on Ni-foam at different reaction durations

and different pH.



Figure S2: Deposition of NiCo-hydroxide precursor on Ni-foam at pH 11 adding few drops of ammonia.



Figure S3: NiCo-hydroxide precursor deposition on Ni-foam at different ammonia : water ratios: (a) 50 : 0; (b) 40 : 10; (c) 30 : 20 and (d) 20 : 30.



Figure S4: Variation of NiCo-hydroxide nanosheet thickness upon number of deposition: (a) Single

deposition, (b) 3-times deposition and (c) 10-times deposition.



Figure S5: NiCo $_2S_4$  nanoflake balls deposited on NiCo $_2O_4$  nanosheets.



Figure S6: XRD pattern of NiCo<sub>2</sub>O<sub>4</sub> nanosheets (JCPDS No. 20-0781) without Ni foam.



Figure S7: Energy dispersive x-ray analysis of NiCo<sub>2</sub>O<sub>4</sub>/NiCo<sub>2</sub>S<sub>4</sub> nanohybrids.



**Figure S8**: (a) N<sub>2</sub> adsorption–desorption isotherm of NCO and NCO-NCS and (b-c) BJH pore size distribution of NCO (b) and NCO-NCS (c).



Figure S9: CV diagram of NiCo<sub>2</sub>O<sub>4</sub> nanosheets and NiCo<sub>2</sub>O<sub>4</sub>/NiCo<sub>2</sub>S<sub>4</sub> hybrid nanostructures at a scan rate 5

mV s<sup>-1</sup>



**Figure S10**: Charge-discharge profile of NiO (formed on Ni foam by annealing) and NiCo<sub>2</sub>O<sub>4</sub>/NiCo<sub>2</sub>S<sub>4</sub> hybrid electrode at current density 1.33 mA cm<sup>-2</sup> showing negligible contribution of NiO (Areal capacitance  $C_a = 0.106$  F cm<sup>-2</sup>) in the performance of hybrid nanostructure (Areal capacitance  $C_a = 5.24$  F cm<sup>-2</sup>).



Figure S11: Specific capacitance (@ 1 A  $g^{-1}$ ) as a function of mass loading for NiCo<sub>2</sub>O<sub>4</sub>/NiCo<sub>2</sub>S<sub>4</sub> hybrid nanostructures on Ni foam.



Figure S12: SEM images of (a) NCO and (b) NCO-NCS after stability tests of several thousand cycles.



**Figure S13**: Charge-discharge profile comparison of physically mixed NiCo<sub>2</sub>O<sub>4</sub> and NiCo<sub>2</sub>S<sub>4</sub> in 3:1 ratio (791 F  $g^{-1}$  @ 1 A  $g^{-1}$ ) and directly grown NiCo<sub>2</sub>O<sub>4</sub>/NiCo<sub>2</sub>S<sub>4</sub> hybrid nanostructure on Ni foam (3542 F  $g^{-1}$  @ 0.9 A  $g^{-1}$ ). Physically mixed NiCo<sub>2</sub>O<sub>4</sub> and NiCo<sub>2</sub>S<sub>4</sub> powder based electrode was fabricated by mixing 80% of sample with 10% PVDF and 10% C-black in NMP.



**Figure S14**: Flexibility test of NiCo<sub>2</sub>O<sub>4</sub>/NiCo<sub>2</sub>S<sub>4</sub> hybrid electrode: Galvanostatic charge-discharge profile of 'single', 'rolled' and 'doubled' experiment at current density 1 A g<sup>-1</sup>.

**Table S1**: Comparison of specific capacitance and capacity retention values of reported  $NiCo_2O_4$  and  $NiCo_2S_4$ -based electrodes with the present work.

| Electrode Material                                                                                                              | Method                             | Specific<br>capacitance<br>(F g <sup>-1</sup> ) | Current<br>density<br>(A g <sup>-1</sup> ) | Capacity retention                                                   | Ref.         |
|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------|--------------|
| NiCo <sub>2</sub> O <sub>4</sub> nanosheets                                                                                     | Microwave                          | 467                                             | 10                                         | 95% after 5000<br>cycles @10 A g <sup>-1</sup>                       | 1            |
| NiCo₂O₄ nanotubes                                                                                                               | Electrospinning technique          | 1647<br>1300                                    | 1<br>10                                    | 93.6% after 3000<br>cycles @10 A g <sup>-1</sup>                     | 2            |
| Urchin-like NiCo <sub>2</sub> O <sub>4</sub><br>nanostructures                                                                  | Hydrothermal                       | 1650<br>1348                                    | 1<br>15                                    | 90.8% after 2000<br>cycles @8 A g <sup>-1</sup>                      | 3            |
| NiCo <sub>2</sub> O <sub>4</sub> microstructure                                                                                 | Hydrothermal                       | 700                                             | 10                                         | 78.7% after 5000<br>cycles @10 A g <sup>-1</sup>                     | 4            |
| NiCo <sub>2</sub> O <sub>4</sub> hollow sphere                                                                                  | Solvothermal                       | 1141<br>862                                     | 1<br>10                                    | 94.7% after 4000<br>cycles @5 A g <sup>-1</sup>                      | 5            |
| NiCo <sub>2</sub> S <sub>4</sub> hollow spheres                                                                                 | Hydrothermal                       | 1263                                            | 2                                          | 94% after 20000 cycles @10 A g <sup>-1</sup>                         | 6            |
| NiCo₂S₄ hexagonal<br>plates                                                                                                     | Hydrothermal                       | 1085<br>852                                     | 0.5<br>10                                  | 95.6% after 2000<br>cycles @10 A g <sup>-1</sup>                     | 7            |
| NiCo₂S₄ ball-in-ball<br>hollow spheres                                                                                          | Solvothermal                       | 1036<br>760                                     | 1<br>10                                    | 87% after 2000<br>cycles @5 A g⁻¹                                    | 8            |
| NiCo <sub>2</sub> O <sub>4</sub> nanoneedle on<br>Ni foam                                                                       | Hydrothermal                       | 2193<br>1490                                    | 1<br>10                                    | 72% after 2000<br>cycles @5 A g <sup>-1</sup>                        | 9            |
| NiCo <sub>2</sub> O <sub>4</sub> multiple<br>hierarchical structures<br>on Ni foam                                              | Hydrothermal                       | 2623<br>2121                                    | 1<br>10                                    | 94% after 3000<br>cycles @10 A g <sup>-1</sup>                       | 10           |
| NiCo₂O₄ nanowires on<br>C-Frame                                                                                                 | Hydrothermal                       | 1696<br>1231                                    | 1<br>8                                     | 88% after 2000<br>cycles @5 A g <sup>-1</sup>                        | 11           |
| NiCo₂O₄ nanosheet on<br>Ni foam                                                                                                 | Co-<br>electrodeposition           | 2010<br>1596                                    | 2<br>12                                    | 94% after 2300<br>cycles @2 A g⁻¹                                    | 12           |
| Flower-like NiCo <sub>2</sub> O <sub>4</sub> on graphene foam                                                                   | Electrodeposition                  | 1402<br>1220                                    | 1<br>10                                    | 76.6% after 5000<br>cycles @5 A g <sup>-1</sup>                      | 13           |
| NiCo₂S₄ nanoflakes on<br>Ni foam                                                                                                | Solution method                    | 2732<br>2200                                    | 1<br>10                                    | 85.2% after 3000<br>cycles @30 A g <sup>-1</sup>                     | 14           |
| NiCo₂S₄ nanoflakes on<br>C-cloth                                                                                                | Electrodeposition                  | 1418                                            | 5                                          | 82.2% after 20000<br>cycles @5 A g <sup>-1</sup>                     | 15           |
| NiCo <sub>2</sub> O <sub>4</sub> @NiCo <sub>2</sub> O <sub>4</sub><br>nanocactus                                                | Hydrothermal/<br>Electrodeposition | 1264<br>810                                     | 2<br>10                                    | 93.4% after 5000<br>cycles @1 A g <sup>-1</sup>                      | 16           |
| NiCo <sub>2</sub> O <sub>4</sub> -Ppy on C-<br>textile                                                                          | Hydrothermal/<br>polymerization    | 2244<br>1358                                    | 1<br>30                                    | 89.5% after 5000<br>cycles @3 A g <sup>-1</sup>                      | 17           |
| NiCo <sub>2</sub> O <sub>4</sub> @Ppy core–<br>shell nanowires on C-<br>microfiber                                              | Hydrothermal/<br>Electrodeposition | 2055<br>742                                     | 1<br>50                                    | 90% after 5000<br>cycles @4 A g <sup>-1</sup>                        | 18           |
| NiCo <sub>2</sub> O <sub>4</sub> @Ni <sub>3</sub> S <sub>2</sub><br>core/shell nanothorn                                        | Hydrothermal/<br>Electrodeposition | 1716<br>1104                                    | 1<br>20                                    | 83.7% after 2000<br>cycles @4 A g <sup>-1</sup>                      | 19           |
| NiCo <sub>2</sub> O <sub>4</sub> @NiCo <sub>2</sub> O <sub>4</sub><br>core–shell nanoarray                                      | Hydrothermal                       | 1917<br>1645                                    | 1<br>10                                    | More than initial<br>value after 2000<br>cycles @5 A g <sup>-1</sup> | 20           |
| NiCo₂S₄@MnO₂<br>nanoheterostructure                                                                                             | Hydrothermal                       | 1338<br>800                                     | 2<br>10                                    | 82% after 2000<br>cycles @20 A g <sup>-1</sup>                       | 21           |
| NiCo <sub>2</sub> O <sub>4</sub> nanosheets on<br>Ni foam<br>NiCo <sub>2</sub> O <sub>4</sub> /NiCo <sub>2</sub> S <sub>4</sub> | Solution method                    | 3184<br>1363<br>3542<br>2767                    | 1.2<br>12<br>0.9                           | 69% after 2000<br>cycles @6 A g <sup>-1</sup><br>84% after 2000      | This<br>work |

## References

- A. K. Mondal, D. W. Su, S. Q. Chen, K. Kretschmer, X. Q. Xie, H. J. Ahn and G. X. Wang, *ChemPhysChem.* 2015, **16**, 169-175.
- L. Li, S. Peng, Y. Cheah, P. Teh, J. Wang, G. Wee, Y. Ko, C. Wong and M. Srinivasan, *Chem. Eur. J*, 2013, **19**, 5892-5898.
- Q. Wang, B. Liu, X. Wang, S. Ran, L. Wang, D. Chen and G. Shen, *J Mater Chem*, 2012, 22, 21647–21653.
- 4. N. Xiang, Y. Ni and X. Ma, *Chem. Asian. J.* 2015, **10**, 1972-1978.
- L. Shen, L. Yu, X. Y. Yu, X. Zhang and X. W. Lou, *Angew. Chem. Int. Ed.* 2015, 54, 1868-1872.
- 6. C. Xia and H. N. Alshareef, *Chem. Mater.* 2015, **27**, 4661-4668.
- 7. J. Yang, W. Guo, D. Li, Q. Qin, J. Zhang, C. Wei, H. Fan, L. Wu and W. Zheng, *Electrochim Acta* 2014, **144**, 16-21.
- L. Shen, L. Yu, H. B. Wu, X.-Y. Yu, X. Zhang and X. W. D. Lou, *Nat. Commun.*, 2015, 6, 6694.
- J. Wu, R. Mi, S. Li, P. Guo, J. Mei, H. Liu, W.-M. Lau and L.-M. Liu, *RSC Adv.* 2015, 5, 25304–25311.
- Q. Zhou, J. Xing, Y. Gao, X. Lv, Y. He, Z. Guo and Y. Li, ACS Appl. Mater. Interf. 2014, 6, 11394-11402.
- W. Xiong, Y. Gao, X. Wu, X. Hu, D. Lan, Y. Chen, X. Pu, Y. Zeng, J. Su and Z. Zhu, ACS Appl. Mater. Interf. 2014, 6, 19416-19423.
- C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen and X. W. D. Lou, *Adv Funct Mater* 2012, 22, 4592-4597.
- 13. C. Zhang, T. Kuila, N. H. Kim, S. H. Lee and J. H. Lee, *Carbon*, 2015, **89**, 328-339.
- 14. J.-G. Wang, R. Zhou, D. Jin, K. Xie and B. Wei, *Energy Storage Mater.* 2016, **2**, 17.

- 15. W. Chen, C. Xia and H. N. Alshareef, *ACS Nano*, 2014, **8**, 9531-9541.
- J. Cheng, Y. Lu, K. Qiu, H. Yan, J. Xu, L. Han, X. Liu, J. Luo, J. K. Kim and Y. Luo, *Sci. Rep.* 2015, **5**, 12099.
- 17. D. Kong, W. Ren, C. Cheng, Y. Wang, Z. Huang and H. Y. Yang, *ACS Appl. Mater. Interf.* 2015, **7**, 21334-21346.
- W. Xiong, X. Hu, X. Wu, Y. Zeng, B. Wang, G. He and Z. Zhu, J Mater Chem A 2015, 3, 17209–17216.
- 19. J. Wang, S. Wang, Z. Huang and Y. Yu, *J Mater Chem A* 2014, **2**, 17595-176701.
- W. Zhou, D. Kong, X. Jia, C. Ding, C. Cheng and G. Wen, *J Mater Chem A* 2014, 2, 6310–6315.
- J. Yang, M. Ma, C. Sun, Y. Zhang, W. Huang and X. Dong, *J Mater Chem A* 2015, 3, 1258-1264.