Supporting Information for

Discovery of cytochrome $b c_{1}$ complex inhibitors inspired by the natural product Karrikinolide

Cheng Chen ${ }^{\text {b }}$, Qiong-You Wu*a, Lian-Ying Shan ${ }^{\text {a }}$, Bei Zhang, ${ }^{\text {a }}$ Francis Verpoort ${ }^{\text {b }}$ and Guang-Fu Yang*a

${ }^{a}$ Key Laboratory of Pesticide \& Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
${ }^{\text {b }}$ State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China;

Contents:

1. The synthesis and characterization of the reported compoundsS2-S5
2. The original spectra for the reported compounds S6-S12
3. The original ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HRMS spectra for compounds $\mathbf{1 2 a}-\mathbf{1 2 q}$ S13-S46

1. The synthesis and characterization of the reported compounds:

1.1 The synthesis and characterization of 5 and 6 .

To a stirred solution of compound $1(18.0 \mathrm{~g}, 120 \mathrm{mmol})$ in acetone $(600 \mathrm{~mL})$ was added slowly anhydrous $\mathrm{CuSO}_{4}(40.0 \mathrm{~g}, 250 \mathrm{mmol})$, followed by dropwise addition of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(2 \mathrm{ml})$. The reaction mixture was filtered through celite and concentrated to afford a yellow oil after being stirred at room temperature for 12 h . Then $0.2 \% \mathrm{HCl}$ aqueous solution (400 mL) was added, and the solution was stirred at room temperature for 15 h . Afterwards, the resulted mixture was netrualized by saturated $\mathrm{NaHCO}_{3}(400 \mathrm{~mL})$, extracted with EtOAc ($2 \times 400 \mathrm{~mL}$), dried over MgSO_{4}, concentrated under reduced pressure to give crude 5 as a yellow oil.
$\mathrm{Et}_{3} \mathrm{~N}(25.0 \mathrm{~mL}, 180 \mathrm{mmol})$ was added to a solution of crude 5 in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(180 \mathrm{~mL})$, and the mixture was stirred at room temperature for 1 h . Then a solution of triphenylmethyl chloride ($50.2 \mathrm{~g}, 180 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(180 \mathrm{~mL})$ was added dropwisely, and the resulted solution was stirred at room temperature for 3 h . Afterwards, the solvents was evaporated and water (400 mL) was added. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 400 \mathrm{~mL})$, and the organic layer was washed with water ($3 \times 400 \mathrm{~mL}$), brine (400 mL), dried over MgSO_{4}, and concentrated. The crude mixture was purified by column chromotography to afford $\mathbf{6}$ as a white solid $(44.0 \mathrm{~g}$, 85% in two steps). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.47-7.43 (m, 6H), 7.34-7.29 (m, $6 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 3 \mathrm{H}), 6.01(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (s, $2 \mathrm{H}), 3.57(\mathrm{dd}, J=10.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=10.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 1 \mathrm{H})$, $1.49(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR data is in accordance with a previous publication. ${ }^{1}$

1.2 The synthesis and characterization of 7 .

Acetic anhydride ($37.8 \mathrm{~mL}, 400 \mathrm{mmol}$) was added to a solution of $\mathbf{6}(43.2 \mathrm{~g}, 100$ $\mathrm{mmol})$ in anhydrous dimethyl sulfoxide (200 ml). After 22 h at room temperature, the reaction mixture was poured into an aqueous solution of $10 \% \mathrm{NaHCO}_{3}(1 \mathrm{~L})$. This mixture was stirred for 1 h and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 500 \mathrm{ml})$. The
combined organic layers were washed with water ($5 \times 500 \mathrm{ml}$), dried over MgSO_{4}, and evaporated. The residue was purified by column chromotography to afford 7 as a white solid ($32.2 \mathrm{~g}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.42-7.20 (m, 15H), 6.33 (d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=10.1,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.31(\mathrm{dd}, J=10.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 6 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR data is in accordance with a previous publication. ${ }^{1}$

1.3 The synthesis and characterization of 8 .

Triethyl phosphonoacetate ($33.2 \mathrm{~g}, 148 \mathrm{mmol}$) was added dropwise to $\mathrm{NaH}(5.92 \mathrm{~g}$, $148 \mathrm{mmol}, 60 \%$ dispersion in mineral oil) in THF (150 mL) at $-10{ }^{\circ} \mathrm{C}$, and the mixture stirred for 0.5 h . Then $7(31.8 \mathrm{~g}, 74 \mathrm{mmol})$] in THF (150 mL) was added dropwisely and the red solution stirred for 1 h . The mixture was concentrated and purified by column chromotography to afford $\mathbf{8}$ as a pale yellow oil ($27.4 \mathrm{~g}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.22(\mathrm{~m}, 15 \mathrm{H}), 6.05(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{dd}$, $J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.29$ ($\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$). The ${ }^{1} \mathrm{H}$ NMR data is in accordance with the literature. ${ }^{2}$

1.4 The synthesis and characterization of 9 .

Trifluoroacetic acid $/ \mathrm{H}_{2} \mathrm{O}(270 \mathrm{~mL}, 4: 1)$ was added to $\mathbf{8}(27.0 \mathrm{~g}, 54.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(150 \mathrm{~mL})$ and the yellow solution was stirred at room temperature for 30 min . The solvent was removed, and $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$ was added. Then the aqueous solution was washed with EtOAc (3 x 300 mL), concentrated and purified by column chromotography to afford 9 as a white solid ($7.43 \mathrm{~g}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}) $\delta 7.00(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), ~ 4.55-4.47(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=10.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.42(\mathrm{~m}, 1 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR data is in accordance with a previous publication. ${ }^{2}$

Acetic anhydride ($15.1 \mathrm{~mL}, 160.0 \mathrm{mmol}$) was added to 9 ($6.88 \mathrm{~g}, 40.0 \mathrm{mmol}$) in pyridine $(160 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 2 h . Then 1 M HCl solution was added slowly to the reaction mixture at $0^{\circ} \mathrm{C}$, and EtOAc $(300 \mathrm{~mL})$ was added. The organic layer was washed with water ($5 \times 300 \mathrm{~mL}$), brine (300 mL), dried over MgSO_{4}, and concentrated to afford crude $\mathbf{1 0}$ as a yellow oil.

Triethylamine ($60.0 \mathrm{~mL}, 44 \mathrm{mmol}$) was added to crude $\mathbf{1 0}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and the solution was stirred at room temperature for 30 min . Concentration of the mixture and flash column chromatography gave compound 11 as a pale yellow oil (7.13 g, 91% in two steps). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.08(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H})$, $5.85(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=12.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=12.5,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR data is in accordance with a previous publication. ${ }^{2}$

1.6 The synthesis of 2 .

$\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(8.32 \mathrm{~g}, 7.20 \mathrm{mmol})$ was added to $11(7.06 \mathrm{~g}, 36.0 \mathrm{mmol})$ in THF (300 mL) and the solution was heated at reflux for 48 h . Concentration of the mixture and flash column chromatography gave compound $\mathbf{2}$ as a white solid ($3.92 \mathrm{~g}, 80 \%$).

1.7 The synthesis of 3 .

Phosphoryl chloride ($1.40 \mathrm{~mL}, 15.0 \mathrm{mmol}$) was added dropwise to $2(0.136 \mathrm{~g}, 1.00$ $\mathrm{mmol})$ in DMF (3 mL) and the solution stirred at $50{ }^{\circ} \mathrm{C}$ for 15 min . The cooled solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, poured into saturated aqueous NaHCO_{3} $(10 \mathrm{~mL})$ and the mixture was stirred for 15 min . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\times 10 \mathrm{~mL}$), the combined organic layers were dried over MgSO_{4}, filtered and concentrated. Flash column chromatography gave compound $\mathbf{3}$ as a white solid ($0.148 \mathrm{~g}, 90 \%$).

1.8 The synthesis of Karrikinolide.

Aluminium(III) chloride ($0.30 \mathrm{~g}, 2.25 \mathrm{mmol}$) was added to $t \mathrm{BuNH}_{2} \cdot \mathrm{BH}_{3}(0.40 \mathrm{~g}, 4.5$ $\mathrm{mmol})$ and $3(0.75 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and the mixture was heated to reflux and stirred for 20 min . Additional $\mathrm{AlCl}_{3}(100 \mathrm{mg}, 0.75 \mathrm{mmol})$ was added periodically
(every 10 min) until the reaction was complete (as monitored by TLC). The mixture was cooled to $0^{\circ} \mathrm{C}$, and $1 \mathrm{M} \mathrm{HCl}(25 \mathrm{~mL})$ was added dropwise with stirring. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$, the combined organic layers were dried over MgSO_{4}, filtered and concentrated. Flash chromatography gave the natural product Karrikinolide as a white solid ($91.1 \mathrm{mg}, 81 \%$).

1.9 The synthesis of 4 .

To a stirred solution of $2(3.67 \mathrm{~g}, 27.0 \mathrm{mmol})$ in $\mathrm{MeOH}(250 \mathrm{~mL})$ was added dropwisely N -bromosuccinimide (NBS, $2.54 \mathrm{~mL}, 30.0 \mathrm{mmol}$), and the reaction mixture was stirred at room temperature for 20 min . The solvent was removed under reduced pressure, and water (200 mL) was added. Then the mixture was extracted with EtOAc (3 x 200 mL), the combined organic layers were dried over MgSO_{4}, concentrated, and purified by flash column chromatography to afford compound $\mathbf{4}$ as a yellow solid ($4.35 \mathrm{~g}, 75 \%$).

1.10 References

1. W. Sowa, Can. J. Chem., 1968, 46, 1586-1589.
2. E. D. Goddard - Borger, E. L. Ghisalberti and R. V. Stick, Eur. J. Org. Chem., 2007, 39253934.

2. The original spectra for the reported compounds:

$>{ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{6}$

$>{ }^{1} \mathrm{H}$ NMR spectrum for compound 7

$>{ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{8}$

$>{ }^{1} \mathrm{H}$ NMR spectrum for compound 9

$>{ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{1 1}$

> ${ }^{1} \mathrm{H}$ NMR spectrum for Karrikinolide
$>{ }^{13} \mathrm{C}$ NMR spectrum for Karrikinolide

$>{ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{2}$

$>{ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{2}$

$>{ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{3}$

$>{ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3}$

$>{ }^{1} \mathrm{H}$ NMR spectrum for compound 4

$>{ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{4}$

3. The original ${ }^{1} \mathbf{H},{ }^{13} \mathbf{C}$ NMR, MS and HR-MS spectra for compounds 12a-12q:

$>{ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 2 a}$

$>{ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 2 a}$

$>$ HRMS (ESI): m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}:$213.05462; Found 213.05475.
$>$ HRMS (ESI) spectrum for $\mathbf{1 2 a}$

$>{ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 2 b}$

${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 2 b}$

$>$ HRMS (ESI): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 247.01565$; Found 247.01583 .
$>$ HRMS (ESI) spectrum for 12b

$>{ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 2 c}$

2x.
virv V

$>{ }^{13} \mathrm{C}$ NMR spectrum for 12 c

$>$ HRMS (ESI): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 297.03692$; Found 297.03758.
$>$ HRMS (ESI) spectrum for 12c

$>{ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 2 d}$

${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 2 d}$

$>$ HRMS (ESI): m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}:$257.08084; Found 257.08099.
$>$ HRMS (ESI) spectrum for $\mathbf{1 2 d}$

$>{ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 2 e}$

$>{ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 2 e}$

$>$ HRMS (ESI): m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 271.09649$; Found 271.09696.
$>$ HRMS (ESI) spectrum for $\mathbf{1 2 e}$

$>{ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 2 f}$

$>{ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 2 f}$

$>$ HRMS (APCI): m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 255.10157$; Found 255.10161.
$>$ HRMS (APCI) spectrum for $\mathbf{1 2 f}$

$>{ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 2 g}$

$>{ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 2 g}$

$>$ HRMS (ESI): m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 269.11722; Found 269.11757.
$>$ HRMS (ESI) spectrum for $\mathbf{1 2 g}$

$>{ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 2 h}$

${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 2 h}$

$>$ HRMS (APCI): m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}:$269.11722; Found 269.11703.
$>$ HRMS (APCI) spectrum for $\mathbf{1 2 h}$

$>{ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 2 i}$

${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 2 i}$

$>$ HRMS (ESI): m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 269.11722; Found 269.11756 .
$>$ HRMS (ESI) spectrum for $\mathbf{1 2 i}$

$>{ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 2 j}$

$>{ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 2} \mathbf{j}$

\Rightarrow HRMS(ESI): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}:$243.06519; Found 243.06553.
$>$ HRMS (ESI) spectrum for $\mathbf{1 2 j}$

$>{ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 2 k}$

$>{ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 2 k}$

$>\operatorname{HRMS}(\mathrm{APCI}): \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 247.01565$; Found: 247.01563 .
$>$ HRMS (APCI) spectrum for $\mathbf{1 2 k}$

$>{ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 2 1}$

${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 2 1}$

$>\operatorname{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 263.07027$; Found 263.07052.
$>$ HRMS (ESI) spectrum for $\mathbf{1 2 1}$

$>{ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 2 m}$

- ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 2 m}$

$>H R M S(E S I): \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 280.97668$; Found 280.97689.
> HRMS (ESI) spectrum for $\mathbf{1 2 m}$

$>{ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 2 n}$

> ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 2 n}$

$>\operatorname{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClO}_{3}[\mathrm{M}+\mathrm{H}]^{+}:$261.03130; Found 261.03413.
$>$ HRMS (ESI) spectrum for $\mathbf{1 2 n}$

$>{ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 2 0}$

> ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 2 o}$

$>\operatorname{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{~F}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 249.03578$; Found 249.03609.
$>$ HRMS (ESI) spectrum for $\mathbf{1 2 0}$

$>{ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 2 p}$

$>{ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 2 p}$

$>$ HRMS (ESI): m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}:$203.03389; Found 203.03338.
$>$ HRMS (ESI) spectrum for 12p

$>{ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 2 q}$

$>{ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 2 q}$

$>$ HRMS $(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 228.06552$, Found 228.06548 .
$>$ HRMS (ESI) spectrum for $\mathbf{1 2 q}$

