Supporting information

General Fabrication of Mesoporous Nb₂O₅ Nanobelts for Lithium Ion Battery Anode

Chao Huang ^a, Jijiang Fu ^a, Hao Song ^a, Xiaofang Li ^a, Xiang Peng ^b, Biao Gao ^{a*},

Xuming Zhang ^{a*}, Paul K. Chu ^b

^a The State Key Laboratory of Refractories and Metallurgy, Wuhan University of

Science and Technology, Wuhan 430081, China

^b Department of Materials Science and Physics, City University of Hong Kong, Tat

Chee Avenue, Kowloon, Hong Kong, China

*Corresponding authors:

xumzhang@wust.edu.cn (X.M. Zhang); gaobiao@wust.edu.cn (B. Gao)

The calculation of theoretical capacity of Nb₂O₅:

The electrochemical reaction of Li ions intercalation/deintercalation process can be expressed as follow:^{1,2}

$$xLi^{+} + xe^{-} + Nb_2O_5 \leftrightarrow Li_xNb_2O_5$$
(1)

The maximum value of x in this formula is 4 according to the typical redox couple of Nb⁵⁺/Nb³⁺.^{1,2} Thus, the theoretical capacity for 1 mol Nb₂O₅ can be calculated as follow:³

$$1 \text{ mA h} = 3.6 \text{ C}$$
 (2)

$$C_{(mAh g^{-1})} = n \times F / 3.6 / M_{(Nb205)} = 4 \times 96485 / 3.6 / 265.8 = 403.3 \text{ mAh g}^{-1}$$
 (3)

Where $C_{(mAh g^{-1})}$ is theoretical capacity, *F* is Faraday's constant, *n* is the valence charge, and $M_{(Nb_2O_5)}$ is the atomic mass of Nb₂O₅. By calculation, the theoretical capacity should be 403 mAh g⁻¹. Structural characterization and discussion

Fig. S1. SEM image of the solid T-Nb₂O₅NBs.

Fig. S2. Full-scan XPS spectra of mesoporous $T-Nb_2O_5$ and solid $T-Nb_2O_5$ NBs in the

region from10 to 1200 eV.

Fig. S3. TEM image of the solid T-Nb₂O₅ NBs.

Fig. S4. N₂ adsorption-desorption isotherm of the mesoporous T-Nb₂O₅ NBs and

Nb₄N₅ NBs

Fig. S5 The GCD curves of the electrodes of (a) solid T-Nb₂O₅ NBs and (b) mesoporous T-Nb₂O₅ NBs at different current densities from 0.1 A g^{-1} to 5.0 A g^{-1} .

References:

- X. Wang, C. Yan, J. Yan, A. Sumboja and P.S. Lee, *Nano Energy*, 2015, 11, 765-772.
- H.Y. Lu, K.X. Xiang, N.B. Bai, W. Zhou, S.L. Wang and H. Chen, *Mater. Lett.*, 2016, 167, 106-108.
- 3. J. Chen, L. Xu, W. Li and X. Gou, Adv. Mate., 2005, 17, 582-586.