# **Supporting Information**

### SI text

#### **S1** Principles of Fluorescence Quenching

If the quenching mechanism belongs to the dynamic quenching, it should follow the well-known Stern-Volmer equation, <sup>28</sup>

$$F_0 / F = 1 + K_{sv}[Q] = 1 + K_q \tau_0[Q]$$
(1)

where  $F_0$  and F denote the steady-state fluorescence intensities in the absence and presence of quencher, respectively.  $K_q$  is the quenching rate constant of the biological macromolecule;  $K_{sv}$  is the Stern–Volmer quenching constant; [Q] is the concentration of quencher;  $\tau_0$  is the average lifetime of the molecule without any quencher and the fluorescence lifetime of the biopolymer is  $10^{-8}$  s.<sup>28</sup>

If not, the fluorescence quenching of CAT should be analyzed using the modified Stern–Volmer equation: <sup>18</sup>

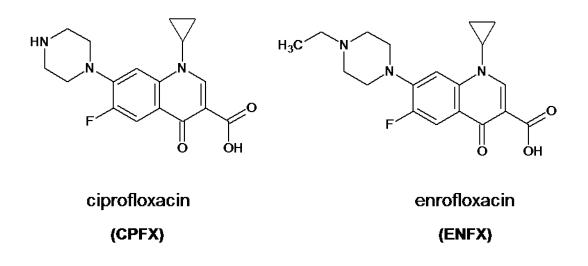
$$\frac{F_0}{\Delta F} = \frac{1}{f_a K_a} \frac{1}{[Q]} + \frac{1}{f_a}$$
(2)

In that case,  $\Box F$  is the difference in fluorescence intensity between the absence and presence of the quenching compound at concentration [Q]; K<sub>a</sub> is the effective quenching constant for the accessible fluorophores, and f<sub>a</sub> is the fraction of accessible fluorescence. The dependence of F<sub>0</sub>/ $\Box F$  on the reciprocal value of the quenching compound concentration [Q] <sup>-1</sup> is linear, with slope equal to the value of (f<sub>a</sub>K<sub>a</sub>)<sup>-1</sup>.

#### S2 Analysis on Thermodynamic Parameters and Binding Modes

If the temperature only changes a little, the enthalpy change ( $\Delta H$ ) can be regarded

as a constant in the formula below:  $^{\rm 28}$ 


$$\ln\left(\frac{K_2}{K_1}\right) = \frac{\Delta H}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$
(3)  
$$\Delta G = \Delta H - T\Delta S = -RT \ln K$$
(4)

where 
$$K_1$$
 and  $K_2$  are the binding constants (analogous to  $K_a$  in Equation 2) at  $T_1$  and  $T_2$ , and R is the universal gas constant.

For a static quenching interaction, the binding constant ( $K_b$ ) and the number of binding sites (n) can be determined using the following formula, <sup>18</sup>

$$\log \frac{F_0 - F}{F} = \log K_b + n \log[Q]$$
(5)

where  $F_0$ , F, and [Q] are the same as in Equation 2;  $K_b$  is the binding constant and n is the number of binding sites per molecule.



Scheme S1 Molecular structure of CPFX and ENFX.

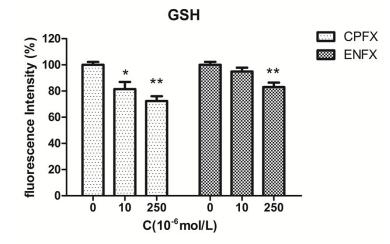



Fig. S1 Average amount of GSH in single erythrocytes incubated with CPFX and ENFX.<sup>18</sup>

Statistical significance vs control group: \*p<0.05, \*\*p<0.01; The values  $\pm$  standard deviations were estimated from 180 individual cells.<sup>18</sup>

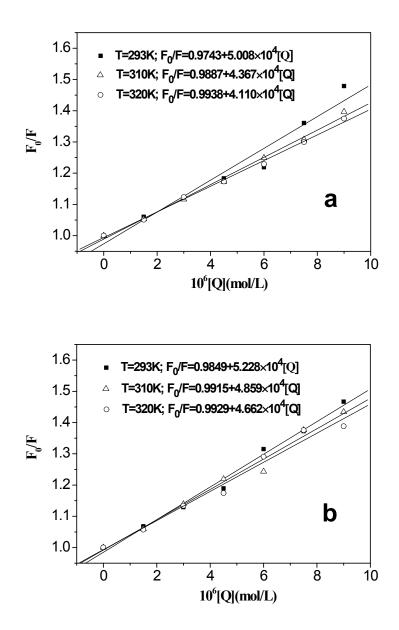



Fig. S2 Stern–Volmer plots of CPFX (a) and ENFX (b) quenching with Cu/Zn-

## SOD at three different temperatures

Conditions: Cu/Zn-SOD: 3×10<sup>-6</sup> mol/L; Buffer: NaH<sub>2</sub>PO<sub>4</sub>/Na<sub>2</sub>HPO<sub>4</sub>, pH=7.4.

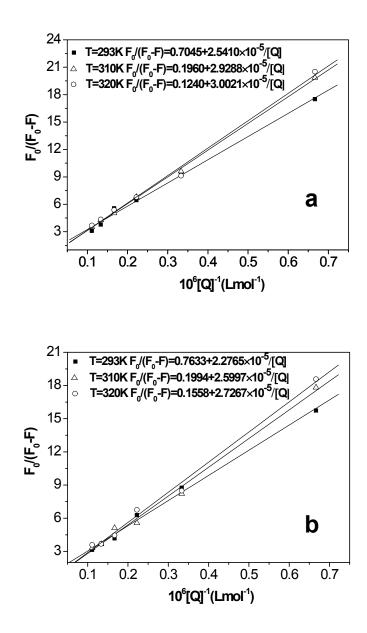



Fig. S3 Modified Stern–Volmer plots for the quenching of Cu/Zn-SOD by CPFX

## (a) and ENFX (b) at different temperatures

Conditions: Cu/Zn-SOD: 3×10<sup>-6</sup> mol/L; Buffer: NaH<sub>2</sub>PO<sub>4</sub>/Na<sub>2</sub>HPO<sub>4</sub>, pH=7.4.

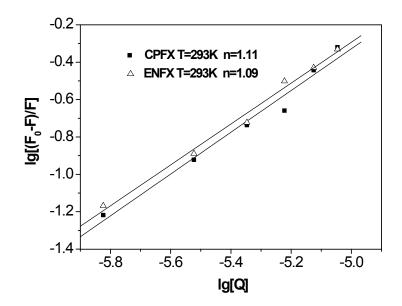



Fig. S4 Plots of log [(F<sub>0</sub> - F)/F] vs log [Q] for the binding of CPFX (■) and ENFX

(
 to Cu/Zn-SOD at 293K.

|      | T(K) | $K_{sv}$ (×10 <sup>4</sup> Lmol <sup>-1</sup> ) | k <sub>q</sub> (×10 <sup>12</sup> Lmol <sup>-1</sup> s <sup>-</sup><br><sup>1</sup> ) | R      | SD     |
|------|------|-------------------------------------------------|---------------------------------------------------------------------------------------|--------|--------|
| CPFX | 293  | 5.008                                           | 5.008                                                                                 | 0.9790 | 0.0376 |
|      | 310  | 4.367                                           | 4.367                                                                                 | 0.9976 | 0.0108 |
|      | 320  | 4.110                                           | 4.110                                                                                 | 0.9982 | 0.0087 |
| ENFX | 293  | 5.228                                           | 5.228                                                                                 | 0.9949 | 0.0189 |
|      | 310  | 4.859                                           | 4.859                                                                                 | 0.9927 | 0.0209 |
|      | 320  | 4.662                                           | 4.662                                                                                 | 0.9895 | 0.0242 |

Table S1 Stern–Volmer quenching constants for the interaction of both CPFX and ENFX

with Cu/Zn-SOD at different temperatures

|      | T(K) | K <sub>a</sub><br>(×10⁴ Lmol <sup>-1</sup> ) | R      | ∆H<br>KJ⋅mol <sup>-1</sup> | ∆G<br>KJ⋅mol <sup>-1</sup> | ∆S<br>J⋅mol <sup>-1</sup> |
|------|------|----------------------------------------------|--------|----------------------------|----------------------------|---------------------------|
|      | 293  | 2.76                                         | 0.9974 |                            | -24.91                     | -127.41                   |
| CPFX | 310  | 0.68                                         | 0.9995 | -62.24                     | -22.75                     | -127.39                   |
|      | 320  | 0.41                                         | 0.9967 |                            | -22.14                     | -125.31                   |
|      | 293  | 3.35                                         | 0.9974 |                            | -25.39                     | -136.31                   |
| ENFX | 310  | 0.77                                         | 0.9964 | -65.33                     | -23.07                     | -136.32                   |
|      | 320  | 0.57                                         | 0.9964 |                            | -23.01                     | -132.25                   |

Table S2 Binding parameters for FQ/SOD interactions at pH 7.4