Supplementary Material

Crystal packing

These compounds provide an ideal platform to see the effect of various weak $\mathrm{CH} \cdots \mathrm{X}[\mathrm{X}=\mathrm{O}, \mathrm{F}$, Cl and π] non-covalent interactions on the solid state-self-assembly particularly in the absence of strong hydrogen bonds. ${ }^{1-10}$ The crystal structure of compounds $\mathbf{1 - 3}$ revealed 3D-networks, composed of various 1D-supramolecular chains stabilized by variety of weak non-covalent interactions. The molecules are arranged in head to head fashion in 1D-chains of compound 1 stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}[(\mathrm{C}(18)-\mathrm{H}(18) \cdots \mathrm{F}(2 \mathrm{~A}) 2.529 \AA,(\mathrm{C}(17)-\mathrm{H}(17) \cdots \mathrm{F}(2 \mathrm{~A}) 2.648 \AA$, (C(30)$\mathrm{H}(30) \cdots \mathrm{F}(2 \mathrm{~A}) 2.622 \AA], \mathrm{C}-\mathrm{H} \cdots \mathrm{O} \quad[(\mathrm{C}(15)-\mathrm{H}(15) \cdots \mathrm{O}(1) 2.705 \AA]$ and $\mathrm{C}-\mathrm{H} \cdots \pi \quad[(\mathrm{C}(15)-$ $\mathrm{H}(15) \cdots \mathrm{C}(9) 2.884 \AA,(\mathrm{C}(14)-\mathrm{H}(14) \cdots \mathrm{C}(10) 2.825 \AA]$ interactions (Fig. S1a, Table S1), antiparallel fashion in compound 2 stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}[(\mathrm{C}(18)-\mathrm{H}(18) \cdots \mathrm{Cl}(4) 2.889 \AA$, $(\mathrm{C}(11)-\mathrm{H}(11) \cdots \mathrm{Cl}(1) \quad 2.768 \AA]$ and $\mathrm{C}-\mathrm{H} \cdots \pi \quad[(\mathrm{C}(23)-\mathrm{H}(23) \cdots \mathrm{C}(10) \quad 2.882 \quad \AA, \quad(\mathrm{C}(23)-$ $\mathrm{H}(23) \cdots \mathrm{C}(11) 2.881 \AA$] interactions (Fig. S1b), and slightly displaced antiparallel fashion in compound 3 stabilized by C-H $\cdots \mathrm{F}[(\mathrm{C}(24)-\mathrm{H}(24) \cdots \mathrm{F}(2) 2.434 \AA]$, C-H $\cdots \mathrm{S}[(\mathrm{C}(9)-\mathrm{H}(9) \cdots \mathrm{S}(1)$ $2.901 \AA$] and $\mathrm{C}-\mathrm{H} \cdots \pi[(\mathrm{C}(9)-\mathrm{H}(9) \cdots \mathrm{C}(1) 2.876 \AA,(\mathrm{C}(10)-\mathrm{H}(10) \cdots \mathrm{C}(18) 2.846 \AA]$ interactions (Fig. S1c). The 1D-supramolecular extend themselves in three dimensions by means of C $\mathrm{H} \cdots \mathrm{Cl}[(\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B}) \cdots \mathrm{Cl}(1) 3.017 \AA$ Å, $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}[(\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B}) \cdots \mathrm{S}(2) 3.068 \AA$], C-H $\cdots \mathrm{O}[(\mathrm{C}(2)-$ $\mathrm{H}(2 \mathrm{~B}) \cdots \mathrm{O}(1) 2.814 \AA]$ and $\mathrm{C}-\mathrm{H} \cdots \pi[(\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A}) \cdots \mathrm{C}(9) 2.935 \AA]$ interactions in compound $\mathbf{1}$ (Fig. S2a), by means of C-H $\cdots \mathrm{Cl}[(\mathrm{C}(29)-\mathrm{H}(29) \cdots \mathrm{Cl}(2) 3.262 \AA,(\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A}) \cdots \mathrm{Cl}(1) 3.017 \AA]$, halide $\cdots \pi[\mathrm{Cl}(2) \cdots \mathrm{C}(29) 3.436 \AA]$ and $\mathrm{C}-\mathrm{H} \cdots \pi[(\mathrm{C}(15)-\mathrm{H}(15) \cdots \mathrm{C}(21) 2.848 \AA$, (C(15)$\mathrm{H}(15) \cdots \mathrm{C}(22) 2.963 \AA$] interactions in compound 2 (Fig. S2b), and by means of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ $[(\mathrm{C}(19)-\mathrm{H}(19) \cdots \mathrm{O}(1) 2.631 \AA,(\mathrm{C}(18)-\mathrm{H}(18) \cdots \mathrm{O}(1) 2.708 \AA,(\mathrm{C}(13)-\mathrm{H}(13) \cdots \mathrm{O}(1) 2.668 \AA], \mathrm{C}-$ $\mathrm{H} \cdots \mathrm{S} \quad[(\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B}) \cdots \mathrm{S}(2) \quad 3.068 \quad \AA], \quad \mathrm{C}-\mathrm{H} \cdots \pi \quad[(\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A}) \cdots \mathrm{C}(8) \quad 2.996 \quad \AA, \quad(\mathrm{C}(5)-$ $\mathrm{H}(5 \mathrm{~A}) \cdots \mathrm{C}(10) 2.768 \AA,(\mathrm{C}(13)-\mathrm{H}(13) \cdots \mathrm{C}(8) 2.911 \AA]$ interactions in compound 3 (Fig. S2c, Table S1) to provide an overall 3D-network structures.

Figure S1: The 1D-supramolecular chains in 3D-crystal packing of compounds 1-3.

Figure S2: The 3D-crystal packing of $\mathbf{1}$ along b-axis (a), $\mathbf{2}$ along b-axis (b) and $\mathbf{3}$ along a-axis (c).

Figure S3: Absorbance of $35 \mu \mathrm{M}$ complex (1) in the absence (a) and presence of (b) $5 \mu \mathrm{M}$, (c) $15 \mu \mathrm{M}$, (d) $20 \mu \mathrm{M}$, (e) $25 \mu \mathrm{M}$ and (f) $30 \mu \mathrm{M}$ DNA. The inset graph represents the plot of A0/A-A0 vs. $1 /[\mathrm{DNA}](\mu \mathrm{M})^{-1}$ for calculation of binding constant (K) and Gibb's free energy ($\Delta \mathrm{G}$)

Figure S4: Absorbance of $25 \mu \mathrm{M}$ complex (2) in the absence (a) and presence of (b) $5 \mu \mathrm{M}$, (c) $10 \mu \mathrm{M}$, (d) $15 \mu \mathrm{M}$, (e) $20 \mu \mathrm{M}$ and (f) $25 \mu \mathrm{M}$ DNA. The inset graph represents the plot of A0/A-A0 vs. $1 /[\mathrm{DNA}](\mu \mathrm{M})^{-1}$ for calculation of binding constant (K) and Gibb's free energy ($\Delta \mathrm{G}$)

Figure S5: Cyclic voltamograms of 1 mM complex 2 with 0.5 M TBAP as supporting electrolyte in the absence (red) and presence of $20 \mu \mathrm{M}$ DNA (green), $40 \mu \mathrm{M}$ DNA (black), 60 $\mu \mathrm{M}$ DNA (blue) and $80 \mu \mathrm{M}$ DNA (orange) showing a decrease in I from I°

Figure S6: Representative plot of $\log (\mathrm{I} / \mathrm{Io}-\mathrm{I})$ versus $\log (1 /[\mathrm{DNA}])$ for determination of binding constant of complex (2).

Figure S7: Representative cyclic voltammogram of 1 mM complex 2 at different $\left(50-600 \mathrm{mVs}^{-1}\right)$ scan rates in DMSO with 0.5 M TBAP as supporting electrolyte.

Figure S8: Representative cyclic voltammogram of 1 mM complex $\mathbf{2}$ in the presence of $20 \mu \mathrm{M}$ DNA at different $\left(50-500 \mathrm{mVs}^{-1}\right)$ scan rates in DMSO with 0.5 M TBAP as supporting electrolyte.

Table S1: Various weak non-covalent interactions forming 1D and 3D networks for crystal packing

Complex	C-H.]		$\underline{\mathrm{C}-\mathrm{H} \cdots \mathrm{O}}$		$\mathbf{C - H \cdots \pi}$		C-H \cdots S		C-H $\cdots \mathrm{Cl}$		$\underline{\mathrm{X}} \cdots \underline{ }$	
	1D	3D										
(1)		-	$2.705 \AA$	2.814 Å	$\begin{aligned} & 2.884 \AA \\ & 2.825 \AA \end{aligned}$	2.935 A	-	3.068 A	-	3.017 Å	-	-
(2)	$\begin{aligned} & 2.889 \AA \\ & 2.768 \AA \end{aligned}$	$3.262 \AA$	-	-	$\begin{aligned} & 2.882 \AA \\ & 2.881 \AA \end{aligned}$	$\begin{aligned} & 2.848 \AA \\ & 2.963 \AA \end{aligned}$	-	-	-	3.017 A	-	3.436 Å
(3)	$2.434 \AA$	-	-	$\begin{aligned} & 2.631 \AA \\ & 2.708 \AA \\ & 2.668 \AA \end{aligned}$	$\begin{aligned} & 2.876 \AA \\ & 2.846 \AA \end{aligned}$	$\begin{aligned} & 2.996 \AA \\ & 2.768 \AA \\ & 2.911 \AA \end{aligned}$	$2.901 \AA$	3.068 A	-	-	-	-

$\mathbf{X}=\mathrm{F}(\mathbf{1}, \mathbf{3}), \mathrm{Cl}(\mathbf{2})$

References

1. A. C. Laungani, M. Keller, J. M. Slattery, I. Krossing and B. Breit, Chem. Eur. J., 2009, 15, 10405-10422.
2. J. A. Howard, V. J. Hoy, D. O'Hagan and G. T. Smith, Tetrahedron, 1996, 52, 1261312622.
3. V. R. Thalladi, H.-C. Weiss, D. Bläser, R. Boese, A. Nangia and G. R. Desiraju, J. Am. Chem. Soc., 1998, 120, 8702-8710.
4. J. D. Dunitz and R. Taylor, Chem. Eur. J., 1997, 3, 89-98.
5. H. Pervez, M. Ahmad, T. B. Hadda, L. Toupet and M. M. Naseer, J. Mol. Struct., 2015, 1098, 124-129.
6. A. Hameed, Z. Shafiq, M. Yaqub, M. Hussain, H. B. Ahmad, M. N. Tahir and M. M. Naseer, New J. Chem., 2015, 39, 6052. DOI: 10.1039/C5NJ00734H
7. R. Jawaria, M. Hussain, Z. Shafiq, H. B. Ahmad, M. N. Tahir, H. A. Shad and M. M. Naseer, Cryst. Eng. Comm., 2015, 17, 2553-2561.
8. F. Anam, A. Abbas, K. M. Lo, S. Hameed and M. M. Naseer, New J. Chem., 2014, 38, 5617-5625.
9. M. Ahmad, H. Pervez, T. B. Hadda, L. Toupet and M. M. Naseer, Tetrahedron Lett., 2014, 55, 5400-5403.
10. M. M. Naseer and S. Hameed, Cryst. Eng. Comm., 2012, 14, 4247-4250.
