Supporting information

Metal-free oxidative esterification of acetophenones with

alcohols: A facile one-pot approach to α -ketoesters

Shiyu Guo,^a Zhongxue Dai,^a Zhao Yang,^b Ning Zhu,^a Li Wan,^a Xin Li,^a Chengkou Liu,^a Zheng Fang,^{a*} Kai Guo^{a,c,*}

^a College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, China

^b College of Engineering China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210003, China

^c State Key Laboratory of Materials-Oriented Chemical Engineering, 30 Puzhu Rd S., Nanjing, 211816, China

General experimental	1
Experimental procedures	1
Screening the equivalent of alcohols	1
¹⁸ O Labeling experiment	2
Analytical data of α -ketoesters	3
^1H NMR and ^{13}C NMR spectra of $\alpha\text{-ketoesters}$	10
References	37

General experimental

All general reagents and solvents were commercially available and used as received. ¹H and ¹³C NMR spectra were measured on magnet system 400'54 ascend instrument purchased from Bruker Biospin AG. Chemical data for protons are reported in parts per million (ppm) downfield from tetramethylsilane and are referenced to the residual proton in the NMR solvent (CDCl₃, 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = penta, dd = doublet of doublets, dt = doublet of triplets, ddt = doublet of doublet of triplets, dtd = doublet of triplet of doublets, m = multiplet, br = broad), coupling constant (J) in Hertz (Hz), and integration. ¹³C NMR were recorded at 125 MHz or 100 MHz and chemical data for carbons are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to the carbon resonance of the solvent. Column chromatography was generally performed on Silicycle silica gel (200-300 mesh). Analytical thin-layer chromatography (TLC) was performed on 0.2 mm coated silica gel plates (HSGF 254) and visualized the course of the reactions using a UV light (254 nm or 365 nm).

Experimental procedures for synthesis of α -ketoesters

Acetophenones **1** (0.5 mmol), alcohols **2** (1.5 mmol), iodine (0.317 g, 1.25 mmol) and Cs_2CO_3 (0.407 g, 1.25 mmol) were dissolved in 3 ml of DMSO and stirred at 110°C for 24h in the sealed tube. To determine the status of the reaction, it was monitored by TLC. After its completion, reaction mixture was cooled to room temperature then quenched with saturated $Na_2S_2O_3$ solution and extracted with ethyl acetate. Organic layer was washed with brine solution and dried over Na_2SO_4 . Removal of the organic solvent in a vacuum rotavaper followed by flash silica gel column chromatographic purification (hexane/ethyl acetate 50:1) afforded the desired product **3** in good yields (60-89%).

Entry	Promoter(equiv.)	Base(equiv.)	Oxidant	Solvent	Alcohol(equiv.)	Temp(℃)	Yield(%) ^b		
1	I ₂ (2.5)	Cs ₂ CO ₃ (2.5)	DMSO	-	1.0	110	<20		
2	I ₂ (2.5)	Cs ₂ CO ₃ (2.5)	DMSO	-	1.5	110	47		
3	I ₂ (2.5)	Cs ₂ CO ₃ (2.5)	DMSO	-	2.0	110	70		
4	I ₂ (2.5)	Cs ₂ CO ₃ (2.5)	DMSO	-	2.5	110	83		
5	I ₂ (2.5)	Cs ₂ CO ₃ (2.5)	DMSO	-	3.0	110	89		
6	I ₂ (2.5)	Cs ₂ CO ₃ (2.5)	DMSO	-	3.5	110	84		
7	I ₂ (2.5)	Cs ₂ CO ₃ (2.5)	DMSO	-	4.0	110	83		
^a Production conditions: 1a (0.5 mmal) 2a (1.5 mmal) promotor (2.5 aquit) have (2.5 aquit) were solved in 2 mL									

Screening the equivalent of alcohols

^{*a*} Reaction conditions: 1a (0.5 mmol), 2a (1.5 mmol), promoter (2.5 equiv.), base (2.5 equiv.) were solved in 3 mL DMSO and stirred at 110° C for 24h in the sealed tube. ^{*b*} Yields of the isolated product.

¹⁸O Labeling experiment

Method for preparation of ¹⁸O-labeled DMSO:^[1]

Solid dimethylsulfur dibromide (5.0 g, 22.5 mmoles) prepared as per known procedure¹ was added portionwise over 15 min to a vigorously stirred solution of triethylamine (6.3 ml, 45 mmoles, freshly distilled from potassium hydroxide) and ¹⁸O-labeled water (0.20 ml, 11 mmoles) in 15 ml of tetrahydrofuran (freshly distilled from lithium aluminum hydride). The temperature of the reaction was maintained below 50 °C by occasional cooling in ice. The precipitate of triethylamine hydrobromide was removed by centrifugation and washed twice with ether. The combined yellow supernatant and washings were distilled at room temperature (15 mm) to remove the solvent and the tan residue was distilled in a short-path apparatus (60-70°C at 0.3 mm) giving 1.03 g of a pale yellow liquid. Without further purification the reaction was performed between acetophenones **1a** (60 mg, 0.5 mmol) and 2-phenylethanol **2a** (183 mg, 1.5 mmol) as per optimized procedure. After the reaction was completed, corresponding ¹⁸O-3aa product was obtained by column chromatography, which was analyzed by ESI-MS analysis. The results clearly assigned the presence of the signal [M+Na]⁺ and [M+K]⁺ at 279.0906 and 295.0595 (2 more than the one of ¹⁶O-3aa product) in noticeable detection (Scheme 1).

Scheme 1

Analytical data of α -ketoesters

Product 3aa:^[2] Light yellow oil (3aa, 113 mg, 89% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 1.2 Hz, 2H), 7.58 – 7.53 (m, 1H), 7.40 – 7.35 (m, 2H), 7.26 – 7.16 (m, 5H), 4.54 (t, *J* = 7.0 Hz, 2H), 3.01 (t, *J* = 7.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 186.41, 163.84, 137.06, 135.01, 132.41, 130.15, 129.14, 128.97, 128.81, 126.99, 66.54, 35.05; HRMS (TOF) m/z [M + Na]⁺ Calcd for $C_{16}H_{14}O_3$ 277.0835 found 277.0886.

Product 3ba:^[2] Light yellow oil (3ba, 124 mg, 91% yield); ¹H NMR (400 MHz, CDCl3) δ 7.80 (dd, J = 8.9, 5.4 Hz, 2H), 7.22 (dt, J = 23.2, 7.5 Hz, 5H), 7.03 (t, J = 8.6 Hz, 2H), 4.54 (t, J = 6.9 Hz, 2H), 3.01 (t, J = 6.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 184.93, 163.23, 141.70, 136.99, 131.53, 130.83, 129.37, 129.14, 128.83, 127.03, 66.67, 35.01; HRMS (TOF) m/z [M + Na]⁺ Calcd for $C_{16}H_{13}O_3Cl$ 311.0445 found 311.0477.

Product 3ca:^[2] Light yellow oil (3ca, 124 mg, 91% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, J = 8.9, 5.4 Hz, 2H), 7.28 – 7.17 (m, 5H), 7.04 (t, J = 8.6 Hz, 2H), 4.55 (t, J = 6.9 Hz, 2H), 3.02 (t, J = 6.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl3) δ 184.60, 168.17, 165.61, 163.45, 137.04, 133.14, 133.04, 129.16, 128.85, 127.04, 116.46, 116.24, 66.63, 35.05; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₆H₁₃O₃F 295.0741 found 295.0742.

Product 3da: Light yellow wax (3da, 126 mg, 84% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.26 – 8.13 (m, 2H), 8.13 – 8.02 (m, 2H), 7.28 – 7.17 (m, 5H), 4.51 (t, *J* = 6.9 Hz, 2H), 3.03 (t, *J* = 6.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl3) δ 164.72, 150.64, 137.56, 135.76, 130.81, 129.04, 128.79, 126.94, 123.68, 66.45, 35.23; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₆H₁₃NO₅ 322.0686 found 322.0691.

Product 3ea: Light yellow oil (3ea, 125 mg, 81% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.86 – 8.64 (m, 1H), 8.33 (ddd, *J* = 8.2, 2.2, 1.0 Hz, 1H), 8.28 – 8.18 (m, 1H), 7.56 (t, *J* = 8.0 Hz, 1H), 7.29 – 7.16 (m, 5H), 4.51 (t, *J* = 7.0 Hz, 2H), 3.04 (t, *J* = 7.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl3) δ 164.47, 148.36, 132.12, 129.75, 129.07, 128.78, 127.50, 126.92, 124.70, 66.43, 35.24; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₆H₁₃NO₅ 322.0686 found 322.0677.

Product 3ga: Light yellow oil (3ga, 120.65 mg, 90% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.1 Hz, 2H), 7.24 – 7.14 (m, 7H), 4.51 (t, J = 6.9 Hz, 2H), 2.99 (t, J = 7.0 Hz, 2H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.04, 164.02, 146.32, 137.09, 130.24, 129.67, 129.10, 128.76, 126.93, 66.40, 35.03, 22.00; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₇H₁₆O₃ 291.0992 found 291.0988.

511a, 9576

Product 3ha: Light yellow oil (3ha, 124.76 mg, 93% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.51 (m, 2H), 7.35 (d, J = 7.6 Hz, 1H), 7.26 – 7.13 (m, 6H), 4.52 (t, J = 7.0 Hz, 2H), 2.99 (t, J = 7.0 Hz, 2H), 2.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.54, 163.91, 138.82, 137.00, 135.77, 132.36, 130.27, 129.01, 128.76, 128.69, 127.41, 126.87, 66.38, 34.97, 21.27; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₇H₁₆O₃ 291.0992 found 291.0998.

Product 3ia: Light yellow oil (3ia, 122.08 mg, 91% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.38 (t, *J* = 8.1 Hz, 2H), 7.27-7.09 (m, 7H), 4.52 (t, *J* = 7.0 Hz, 2H), 3.00 (t, *J* = 7.0 Hz, 2H), 2.49 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 188.70, 164.61, 141.47, 137.10, 133.77, 132.50, 132.41, 131.15, 129.11, 128.77, 126.95, 126.02, 66.46, 35.03, 21.58; HRMS (TOF) m/z [M + Na]⁺ Calcd for $C_{17}H_{16}O_3$ 291.0992 found 291.1016.

Product 3ja:^[2] Light yellow wax (3ja, 136.96 mg, 90% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.95 (d, *J* = 8.6 Hz, 1H), 7.99 (d, *J* = 8.2 Hz, 1H), 7.81 (d, *J* = 8.1 Hz, 1H), 7.59 (t, *J* = 7.3 Hz, 2H), 7.49 (t, *J* = 7.5 Hz, 1H), 7.34 (t, *J* = 7.7 Hz, 1H), 7.25 – 7.15 (m, 5H), 4.57 (t, *J* = 6.9 Hz, 2H), 3.02 (t, *J* = 6.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 188.79, 164.61, 137.18, 135.90, 134.28, 134.01, 131.06, 129.39, 129.17, 128.86, 128.81, 128.12, 127.15, 127.98, 125.73, 124.44, 66.54, 35.10; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₂₀H₁₆O₃ 327.0992 found 327.1013.

3ka, 82%

Product 3ka:^[2] Light yellow oil (3ka, 124.78 mg, 82% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.88 (d, *J* = 8.7 Hz, 1H), 7.83 – 7.75 (m, 3H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.47 (t, *J* = 7.4 Hz, 1H), 7.26-7.15 (m, 5H), 4.59 (t, *J* = 7.0 Hz, 2H), 3.04 (t, *J* = 6.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 186.31, 163.94, 137.17, 136.49, 133.65, 132.36, 130.18, 129.84, 129.69, 129.15, 128.83, 128.02, 127.22, 127.02, 124.06, 66.62, 35.12; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₂₀H₁₆O₃ 327.0992 found 327.1008.

Product 3la: Light yellow oil (3la, 84.60 mg, 65% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (dd, J = 3.8, 1.2 Hz, 1H), 7.74 – 7.67 (m, 1H), 7.26 – 7.14 (m, 5H), 7.06 (t, J = 4.4 Hz, 1H), 4.50 (t, J = 7.1 Hz, 2H), 3.02 (t, J = 7.1 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 176.41, 161.69, 139.19, 137.55, 137.39, 137.02, 129.12, 128.80, 128.77, 126.99, 67.03, 34.98; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₄H₁₂O₃S 283.0399 found 283.0391.

Product 3ab: Light yellow wax (3ab, 104.75 mg, 70% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.6 Hz, 2H), 7.88 (d, *J* = 8.1 Hz, 2H), 7.66 (t, *J* = 7.9 Hz, 1H), 7.46 (dd, *J* = 17.2, 8.2 Hz, 4H), 4.65 (t, *J* = 6.6 Hz, 2H), 3.21 (t, *J* = 6.6 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 185.90, 163.51, 147.22, 144.89, 135.23, 132.30, 130.05, 129.02, 123.97, 65.42, 34.86; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₆H₁₃O₅N 322.0686 found 322.0693.

Product 3ac: Light yellow oil (3ac, 128.27 mg, 77% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.74 (m, 2H), 7.69 – 7.61 (m, 1H), 7.53 – 7.38 (m, 4H), 7.19 – 7.05 (m, 2H), 4.60 (ddd, J = 9.5, 5.9, 2.4 Hz, 2H), 3.04 (td, J = 6.6, 3.5 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 186.27, 163.75, 136.15, 135.12, 132.39, 131.93, 130.92, 130.13, 129.02, 120.96, 66.05, 34.5; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₆H₁₃O₃Br 354.9940 found 354.9964.

Product 3ad: Light yellow oil (3ad, 103.94 mg, 72% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.3 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.39 (t, J = 7.9 Hz, 2H), 7.20 (t, J = 6.7 Hz, 2H), 7.11 (d, J = 8.3 Hz, 2H), 4.52 (t, J = 6.8 Hz, 2H), 2.98 (t, J = 6.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 186.27, 163.74, 135.62, 135.11, 132.90, 132.38, 130.52, 130.11,129.00, 128.95, 66.13, 34.44; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₆H₁₃O₃Cl 311.0445 found 311.0454.

Product 3ae: Light yellow oil (3ae, 105.38 mg, 73% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.78 (m, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.40 (t, *J* = 7.8 Hz, 2H), 7.33 – 7.28 (m, 1H), 7.22 – 7.18 (m, 1H), 7.16 – 7.08 (m, 2H), 4.56 (t, *J* = 6.9 Hz, 2H), 3.16 (t, *J* = 6.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 186.20, 163.68, 135.02, 134.73, 134.37, 132.48, 131.48, 130.16, 129.84, 128.97, 128.59, 127.14, 64.86, 32.90; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₆H₁₃O₃Cl 311.0445 found 311.0460.

Product 3af: Light yellow oil (3af, 112.69 mg, 82% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.91 (t, *J* = 6.2 Hz, 2H), 7.65 (t, *J* = 6.9 Hz, 1H), 7.48 (t, *J* = 7.5 Hz, 2H), 7.17 (dd, *J* = 12.4, 5.1 Hz, 4H), 4.59 (t, *J* = 7.0 Hz, 2H), 3.12 (t, *J* = 7.2 Hz, 2H), 2.38 (d, *J* = 4.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.34, 163.79, 136.68, 135.08, 135.00, 132.50, 130.66, 130.18, 129.81, 128.98, 127.17, 126.38, 65.71, 32.35, 19.50; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₇H₁₆O₃ 291.0992 found 291.1001.

Product 3ag:^[2] Light yellow oil (3ag, 125.10 mg, 88% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (dd, J = 8.3, 1.1 Hz, 2H), 7.68 – 7.58 (m, 1H), 7.46 (t, J = 7.8 Hz, 2H), 7.24 – 7.10 (m, 2H), 6.94 – 6.78 (m, 2H), 4.59 (t, J = 7.0 Hz, 2H), 3.80 (s, 3H), 3.03 (t, J = 7.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 186.44, 163.86, 158.66, 134.98, 132.46, 130.14, 129.04, 128.94, 114.20 , 66.72, 55.36, 34.19; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₇H₁₆O₄ 307.0941 found 307.0949.

Product 3ah: Light yellow oil (3ah, 85.90 mg, 66% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.87 (m, 2H), 7.68 – 7.62 (m, 1H), 7.49 (td, *J* = 7.6, 1.7 Hz, 2H), 7.19 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.01 – 6.88 (m, 2H), 4.62 (t, *J* = 6.8 Hz, 2H), 3.31 (t, *J* = 6.7 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 186.22, 163.70, 138.98, 135.04, 132.44, 130.17, 128.99, 127.18, 126.14, 124.43, 66.21, 29.22; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₄H₁₂O₃S 283.0399 found 283.0417.

381, 76%

Product 3ai: Light yellow oil (3ai, 115.65 mg, 76% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.82 (m, 6H), 7.66-7.43 (m, 6H), 6.37 (p, *J* = 6.8 Hz, 1H), 1.81 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.37, 163.39, 137.66, 134.88, 133.28, 133.17, 132.50, 130.01, 128.90, 128.69, 128.15, 127.75, 126.46, 126.42, 123.90, 75.04, 22.18; HRMS (TOF) m/z [M + Na]⁺ Calcd for $C_{20}H_{16}O_3$ 327.0992 found 327.1015.

3aj, 80%

Product 3aj:^[6] Colourless oil (3aj, 96.10 mg, 80% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 7.2 Hz, 2H), 7.65 (t, *J* = 7.4 Hz, 1H), 7.53 – 7.33 (m, 7H), 5.42 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 186.17, 163.77, 135.06, 134.67, 132.56, 130.15, 128.94, 128.87, 67.88; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₅H₁₂O₃ 263.0679 found 263.0685.

Product 3ak:^[5] Light yellow solid (3ak, 94.77 mg, 69% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (dd, J = 13.8, 6.5 Hz, 2H), 7.65 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.8 Hz, 2H), 7.47 – 7.29 (m, 4H), 5.37 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 185.92, 163.56, 135.17, 134.94, 133.18, 132.48, 130.15, 130.11, 129.10, 129.07, 66.99; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₅H₁₁O₃Cl 297.0829 found 297.0300.

3al, 83%

Product 3al: Light yellow solid (3al, 105.53 mg, 83% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.89 (m, 2H), 7.68 – 7.59 (m, 1H), 7.53 – 7.44 (m, 2H), 7.33 (t, *J* = 10.6 Hz, 2H), 7.20 (d, *J* = 7.9 Hz, 2H), 5.38 (s, 2H), 2.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.27, 163.85, 138.91, 135.03, 132.61, 131.69, 130.16, 129.55, 129.02, 128.91, 67.92, 21.38; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₆H₁₄O₃ 277.0835 found 277.0845.

Product 3am: Light yellow solid (3am, 116.22 mg, 86% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (dd, *J* = 8.3, 1.1 Hz, 2H), 7.58 – 7.52 (m, 1H), 7.39 (t, *J* = 7.8 Hz, 2H), 7.31 (d, *J* = 8.6 Hz, 2H), 6.85 – 6.81 (m, 2H), 5.27 (s, 2H), 3.73 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.30, 163.89, 160.20, 135.00, 132.60, 130.72, 130.13, 129.00, 126.80, 114.24, 67.82, 55.4; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₆H₁₄O₄ 293.0784 found 293.0808.

Product 3an:^[4] Light yellow liquid (3an, 88.27 mg, 76% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.16 – 7.76 (m, 2H), 7.74 – 7.56 (m, 1H), 7.54 – 7.40 (m, 2H), 5.09 (ddd, *J* = 13.2, 8.9, 4.0 Hz, 1H), 1.99 (d, *J* = 4.1 Hz, 2H), 1.78 (dd, *J* = 8.7, 4.2 Hz, 2H), 1.65 – 1.51 (m, 3H), 1.47 – 1.27 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.94, 163.80, 134.90, 132.71, 130.07, 129.00, 75.57, 31.57, 25.30, 23.76; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₄H₁₆O₃ 255.0992 found 255.0998.

Product 3ao:^[3] Colourless liquid (3ao, 73.22 mg, 71% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.2 Hz, 2H), 7.58 (t, *J* = 7.8 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 2H), 4.32 (t, *J* = 6.7 Hz, 2H), 1.73 – 1.64 (m, 2H), 1.43 – 1.32 (m, 2H), 0.89 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.62, 164.13, 134.99, 132.63, 130.11, 129.01, 66.21, 30.59, 19.15, 13.74; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₂H₁₄O₃ 229.0835 found 229.0841.

Product 3ap:^[2] Light yellow liquid (3ap, 61.47 mg, 69% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.09 – 7.93 (m, 2H), 7.66 (t, *J* = 7.4 Hz, 1H), 7.51 (t, *J* = 7.8 Hz, 2H), 4.45 (q, *J* = 7.1 Hz, 2H), 1.42 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.56, 163.96, 135.02, 132.62, 130.15, 129.02, 62.46, 14.24; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₀H₁₀O₃ 201.0522 found 201.0523.

Product 3aq: Colourless liquid (3aq, 65.48 mg, 60% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 7.4 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.43 (t, J = 7.7 Hz, 2H), 4.78 (s, 1H), 4.72 (s, 1H), 4.44 (t, J = 6.9 Hz, 2H), 2.42 (t, J = 6.8 Hz, 2H), 1.72 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.43, 163.92, 141.01, 135.01, 132.55, 130.16, 128.98, 113.13, 64.45, 36.66, 22.54; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₃H₁₄O₃ 241.0835 found 241.0834.

 ^1H NMR and ^{13}C NMR spectra of $\alpha\text{-ketoesters}$ 3 Product 3aa

Product 3ca

Product 3da

Product 3ea

Product 3ga

Product 3ha

Product 3ia

Product 3ja

Product 3ka

Product 3la

Product 3ab

Product 3ac

Product 3ad

Product 3af

Product 3ag

(P.P.10)

Product 3ah

Product 3ai

7.95 7.92 7.92 7.92 7.53 7.53 7.53 6.38 6.38 6.38 6.33 6.33 6.33

1.83 1.81 1.81

0

Product 3al

31

Product 3an

Product 3ao

100 90 f1 (ppm)

Product 3ap

Product 3aq

References

- [1] A. H. Fenselau, J. G. Moffatt, J. Am. Chem. Soc., 1966, 88, 1762.
- [2] C. Zhang, P. Feng, N. Jiao, J. Am. Chem. Soc., 2013, 135, 15257
- [3] S. K. Alamsetti, G. Sekar, Chem. Commun., 2010, 46, 7235
- [4] S. M. Nicolle, C. J. Moody, *Chem. Eur. J.*, 2014, **20**, 4420.
- [5] T. Zhu, S. Jin, M. Xu, Angew. Chem. Int. Ed., 2012, 51, 780.
- [6] L. Liu, L. Du, Y. Du, K. Zhao, Org. Lett., 2014, 16, 5772.