Supporting Information

Synthesis, structure and properties of neutral energetic materials

based on N-functionalization of 3,6-dinitropyrazolo[4,3-c]pyrazole

Yanan Li,* Yuanjie Shu, Bozhou Wang, Shengyong Zhang, Lianjie Zhai

State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, Shanxi 710065, People's Republic of China

Email: lyn2003080094@126.com

Table of Contents

- 1. X-ray crystallography
- 2. NMR spectra of all compounds
- 3. Theoretical study

1. X-ray crystallography

Single crystals suitable for X-ray measurement were obtained by slow evaporation of aqueous solution of DNPP, 4, dimethyl formamide solution of 12, and methanol solution of 15 at room temperature, respectively. Bond lengths, bond angles and torsion angles of the data collection and refinement are given in Table S1–S6. The CIF files of $4 \cdot 2H_2O$, 12 and 15 have been deposited at the Cambridge Crystallographic Data Centre as supplementary publication 1487948, 1434787, and 1410323.

O(6)-H(6A)	0.807(18)	N(6)-C(14)	1.361(3)
O(6)-H(6B)	0.811(18)	N(6)-H(6)	0.8600
N(5)-C(15)	1.331(3)	N(1)-O(2)	1.219(2)
N(5)-N(6)	1.346(2)	N(1)-C(15)	1.426(3)
O(3)-N(2)	1.225(2)	N(3)-C(16)	1.361(3)
O(1)-N(1)	1.229(2)	N(3)-H(3)	0.8600
O(4)-N(2)	1.219(2)	C(13)-C(16)#1	1.404(3)
N(4)-C(13)	1.329(3)	C(14)-C(14)#2	1.380(4)
N(4)-N(3)	1.350(2)	C(14)-C(15)#2	1.409(3)
O(5)-H(5A)	0.821(18)	C(15)-C(14)#2	1.409(3)
O(5)-H(5B)	0.825(18)	C(16)-C(16)#1	1.379(4)
N(2)-C(13)	1.436(3)	C(16)-C(13)#1	1.404(3)

Table S1. Bond lengths [Å] for the structure of $4 \cdot 2H_2O$.

Table S2. Bond angles [deg] and torsion angles [deg] for the structure of $4.2H_2O$.

H(6A)-O(6)-H(6B)	109(3)	C(15)-N(5)-N(6)-C(14)	0.0(2)
C(15)-N(5)-N(6)	105.91(17)	C(13)-N(4)-N(3)-C(16)	0.3(2)
C(13)-N(4)-N(3)	105.67(17)	N(3)-N(4)-C(13)-C(16)#1	-0.1(2)
H(5A)-O(5)-H(5B)	103(3)	N(3)-N(4)-C(13)-N(2)	-179.53(18)
O(4)-N(2)-O(3)	124.09(18)	O(4)-N(2)-C(13)-N(4)	2.4(3)
O(4)-N(2)-C(13)	119.59(18)	O(3)-N(2)-C(13)-N(4)	-178.0(2)
O(3)-N(2)-C(13)	116.32(18)	O(4)-N(2)-C(13)-C(16)#1	-177.0(2)
N(5)-N(6)-C(14)	111.01(16)	O(3)-N(2)-C(13)-C(16)#1	2.7(3)
N(5)-N(6)-H(6)	124.5	N(5)-N(6)-C(14)-C(14)#2	0.0(3)
C(14)-N(6)-H(6)	124.5	N(5)-N(6)-C(14)-C(15)#2	179.9(3)
O(2)-N(1)-O(1)	123.94(19)	N(6)-N(5)-C(15)-C(14)#2	-0.1(3)
O(2)-N(1)-C(15)	119.38(18)	N(6)-N(5)-C(15)-N(1)	-179.7(2)
O(1)-N(1)-C(15)	116.68(18)	O(2)-N(1)-C(15)-N(5)	1.1(3)
N(4)-N(3)-C(16)	110.73(16)	O(1)-N(1)-C(15)-N(5)	-179.2(2)
N(4)-N(3)-H(3)	124.6	O(2)-N(1)-C(15)-C(14)#2	-178.4(2)
C(16)-N(3)-H(3)	124.6	O(1)-N(1)-C(15)-C(14)#2	1.3(4)
N(4)-C(13)-C(16)#1	111.81(18)	N(4)-N(3)-C(16)-C(16)#1	-0.4(3)
N(4)-C(13)-N(2)	120.11(18)	N(4)-N(3)-C(16)-C(13)#1	-179.8(3)
C(16)#1-C(13)-N(2)	128.08(19)		
N(6)-C(14)-C(14)#2	107.7(2)		

N(6)-C(14)-C(15)#2	148.24(19)
C(14)#2-C(14)-C(15)#2	104.1(2)
N(5)-C(15)-C(14)#2	111.31(18)
N(5)-C(15)-N(1)	120.81(19)
C(14)#2-C(15)-N(1)	127.88(19)
N(3)-C(16)-C(16)#1	107.9(2)
N(3)-C(16)-C(13)#1	148.21(19)
C(16)#1-C(16)-C(13)#1	103.9(2)

Symmetry transformations used to generate equivalent atoms: #1 -x, -y+2, -z+1; #2 -x, -y+1, -z+2

Table S3. Bond lengths A for the structure of 12.	Table S3.	Bond lengths	[Å] for	the structure	of 12 .
--	-----------	--------------	---------	---------------	----------------

N(1)-O(1)	1.215(3)	N(3)-N(4)	1.396(3)
N(1)-O(2)	1.227(3)	N(4)-H(4A)	0.8600
N(1)-C(1)	1.425(3)	N(4)-H(4B)	0.8600
N(2)-C(1)	1.330(3)	C(1)-C(2)#1	1.403(3)
N(2)-N(3)	1.339(3)	C(2)-C(2)#1	1.380(5)
N(3)-C(2)	1.365(3)	C(2)-C(1)#1	1.403(3)

 Table S4. Bond angles [deg] and torsion angles [deg] for the structure of 12.

O(1)-N(1)-O(2)	124.2(2)	C(1)-N(2)-N(3)-C(2)	-0.4(3)
O(1)-N(1)-C(1)	120.1(2)	C(1)-N(2)-N(3)-N(4)	-176.9(2)
O(2)-N(1)-C(1)	115.7(2)	N(3)-N(2)-C(1)-C(2)#1	0.2(3)
C(1)-N(2)-N(3)	105.8(2)	N(3)-N(2)-C(1)-N(1)	-179.9(2)
N(2)-N(3)-C(2)	111.48(19	O(1)-N(1)-C(1)-N(2)	2.7(4)
)		
N(2)-N(3)-N(4)	118.6(2)	O(2)-N(1)-C(1)-N(2)	-177.9(2)
C(2)-N(3)-N(4)	129.8(2)	O(1)-N(1)-C(1)-C(2)#1	-177.4(2)
N(3)-N(4)-H(4A)	120.0	O(2)-N(1)-C(1)-C(2)#1	2.0(4)
N(3)-N(4)-H(4B)	120.0	N(2)-N(3)-C(2)-C(2)#1	0.4(3)
H(4A)-N(4)-H(4B)	120.0	N(4)-N(3)-C(2)-C(2)#1	176.4(3)
N(2)-C(1)-C(2)#1	111.3(2)	N(2)-N(3)-C(2)-C(1)#1	180.0(3)
N(2)-C(1)-N(1)	121.1(2)	N(4)-N(3)-C(2)-C(1)#1	-4.0(6)
C(2)#1-C(1)-N(1)	127.6(2)		
N(3)-C(2)-C(2)#1	106.9(3)		
N(3)-C(2)-C(1)#1	148.6(2)		
C(2)#1-C(2)-C(1)#1	104.5(3)		

Symmetry transformations used to generate equivalent atoms: #1 - x+2, -y, -z+1

	0		
N(1)-O(1)	1.219(7)	N(7)-C(6)	1.331(7)
N(1)-O(2)	1.230(7)	N(8)-O(9)	1.212(7)
N(1)-C(1)	1.434(8)	N(8)-O(10)	1.225(7)
N(2)-C(1)	1.315(7)	N(8)-C(6)	1.441(8)

Table S5. Bond lengths [Å] for the structure of 15.

N(2)-N(3)	1.346(6)	O(3)-C(3)	1.435(8)
N(3)-C(2)	1.375(7)	O(8)-C(4)	1.430(7)
N(3)-C(3)	1.436(7)	C(1)-C(2)#1	1.397(8)
N(4)-O(4)	1.091(9)	C(2)-C(2)#1	1.375(11
)
N(4)-O(5)	1.163(10)	C(2)-C(1)#1	1.397(8)
N(4)-O(3)	1.414(9)	C(3)-H(3A)	0.9700
N(5)-O(6)	1.175(8)	C(3)-H(3B)	0.9700
N(5)-O(7)	1.198(8)	C(4)-H(4A)	0.9700
N(5)-O(8)	1.405(8)	C(4)-H(4B)	0.9700
N(6)-N(7)	1.338(7)	C(5)-C(5)#2	1.365(11
)
N(6)-C(5)	1.369(7)	C(5)-C(6)#2	1.398(8)
N(6)-C(4)	1.430(7)	C(6)-C(5)#2	1.398(8)

 Table S6. Bond angles [deg] and torsion angles [deg] for the structure of 15.

O(1)-N(1)-O(2)	124.3(5)	C(1)-N(2)-N(3)-C(2)	-1.7(7)
O(1)-N(1)-C(1)	120.0(6)	C(1)-N(2)-N(3)-C(3)	-173.9(5)
O(2)-N(1)-C(1)	115.6(5)	C(5)-N(6)-N(7)-C(6)	-0.9(6)
C(1)-N(2)-N(3)	107.0(5)	C(4)-N(6)-N(7)-C(6)	-174.3(5)
N(2)-N(3)-C(2)	109.7(4)	O(4)-N(4)-O(3)-C(3)	178.9(8)
N(2)-N(3)-C(3)	119.8(5)	O(5)-N(4)-O(3)-C(3)	-3.4(10)
C(2)-N(3)-C(3)	130.0(5)	O(6)-N(5)-O(8)-C(4)	-5.0(8)
O(4)-N(4)-O(5)	131.8(12)	O(7)-N(5)-O(8)-C(4)	176.1(6)
O(4)-N(4)-O(3)	119.2(10)	N(3)-N(2)-C(1)-C(2)#1	1.0(7)
O(5)-N(4)-O(3)	109.0(9)	N(3)-N(2)-C(1)-N(1)	177.7(6)
O(6)-N(5)-O(7)	130.6(8)	O(1)-N(1)-C(1)-N(2)	-2.9(11)
O(6)-N(5)-O(8)	119.4(6)	O(2)-N(1)-C(1)-N(2)	177.3(7)
O(7)-N(5)-O(8)	110.0(7)	O(1)-N(1)-C(1)-C(2)#1	173.1(7)
N(7)-N(6)-C(5)	110.6(5)	O(2)-N(1)-C(1)-C(2)#1	-6.7(11)
N(7)-N(6)-C(4)	118.5(4)	N(2)-N(3)-C(2)-C(2)#1	1.7(8)
C(5)-N(6)-C(4)	130.5(5)	C(3)-N(3)-C(2)-C(2)#1	172.9(6)
C(6)-N(7)-N(6)	106.2(4)	N(2)-N(3)-C(2)-C(1)#1	179.8(9)
O(9)-N(8)-O(10)	124.7(6)	C(3)-N(3)-C(2)-C(1)#1	-9.0(14)
O(9)-N(8)-C(6)	120.8(6)	N(2)-N(3)-C(3)-O(3)	-124.3(6)
O(10)-N(8)-C(6)	114.5(6)	C(2)-N(3)-C(3)-O(3)	65.2(9)
N(4)-O(3)-C(3)	114.5(6)	N(4)-O(3)-C(3)-N(3)	89.6(7)
N(5)-O(8)-C(4)	113.1(5)	N(7)-N(6)-C(4)-O(8)	-117.9(6)
N(2)-C(1)-C(2)#1	111.3(5)	C(5)-N(6)-C(4)-O(8)	70.2(7)
N(2)-C(1)-N(1)	119.9(5)	N(5)-O(8)-C(4)-N(6)	78.1(6)
C(2)#1-C(1)-N(1)	128.7(6)	N(7)-N(6)-C(5)-C(5)#2	1.4(7)
C(2)#1-C(2)-N(3)	107.4(6)	C(4)-N(6)-C(5)-C(5)#2	173.8(6)
C(2)#1-C(2)-C(1)#1	104.7(6)	N(7)-N(6)-C(5)-C(6)#2	179.1(8)
N(3)-C(2)-C(1)#1	148.0(5)	C(4)-N(6)-C(5)-C(6)#2	-8.5(13)

N(3)-C(3)-O(3)	113.9(5)	N(6)-N(7)-C(6)-C(5)#2	0.1(6)
N(3)-C(3)-H(3A)	108.8	N(6)-N(7)-C(6)-N(8)	178.1(5)
O(3)-C(3)-H(3A)	108.8	O(9)-N(8)-C(6)-N(7)	-7.7(9)
N(3)-C(3)-H(3B)	108.8	O(10)-N(8)-C(6)-N(7)	174.0(6)
O(3)-C(3)-H(3B)	108.8	O(9)-N(8)-C(6)-C(5)#2	169.9(6)
H(3A)-C(3)-H(3B)	107.7	O(10)-N(8)-C(6)-C(5)#2	-8.4(10)
N(6)-C(4)-O(8)	112.4(4)		
N(6)-C(4)-H(4A)	109.1		
O(8)-C(4)-H(4A)	109.1		
N(6)-C(4)-H(4B)	109.1		
O(8)-C(4)-H(4B)	109.1		
H(4A)-C(4)-H(4B)	107.9		
C(5)#2-C(5)-N(6)	107.4(6)		
C(5)#2-C(5)-C(6)#2	104.9(6)		
N(6)-C(5)-C(6)#2	147.7(6)		
N(7)-C(6)-C(5)#2	110.9(5)		
N(7)-C(6)-N(8)	119.2(5)		
C(5)#2-C(6)-N(8)	129.9(6)		

Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y+1, -z+1; #2 -x, -y, -z

2. NMR spectra of all compounds

Fig. S1 ¹H NMR spectrum of **4** in DMSO- d_6

Fig. S3 ¹⁴N NMR spectrum of 4 in DMSO- d_6

Fig. S5 ¹H NMR spectrum of 12 in DMSO- d_6

Fig. S7 ¹H NMR spectrum of 13 in DMSO- d_6

Fig. S8 ¹³C NMR spectrum of 13 in DMSO- d_6

Fig. S9 ¹H NMR spectrum of 15 in DMSO- d_6

Fig. S11 ¹H NMR spectrum of 17 in DMSO- d_6

Fig. S12 ¹³C NMR spectrum of 17 in DMSO- d_6

Fig. S13 ¹³C NMR spectrum of 18 in CD₃CN

Fig. S15 13 C NMR spectrum of 20 in DMSO- d_6

3. Theoretical study

All quantum chemical calculations were carried out by using the Gaussian 09 (revision A.02) program package and visualized by Gauss View 5.05.^{1,2} The gas phase enthalpies of formation (Table S7) were obtained by the atomization method (equation (1)) based on CBS-4M calculated electronic enthalpies using NIST³ values as standardized values for the standard heats of formation ($\Delta_{f}H^{\circ}$) (Table S8).

$$\Delta_{\rm f} H^{\rm o}_{({\rm g},{\rm M},298)} = H_{({\rm Molecule},298)} - \sum H^{\rm o}_{({\rm Atoms},298)} + \sum \Delta_{\rm f} H^{\rm o}_{({\rm Atoms},298)} (1)$$

The solid state enthalpies of formation (Table S7) can be determined using the gas-phase enthalpy of formation and enthalpy of sublimation phase transition according to the Hess' law of constant heat summation as the equation (2).⁴

$$\Delta H \text{ (solid)} = \Delta H \text{ (gas)-}\Delta H \text{ (sublimation)}$$
(2)

Based on the electrostatic potential of a molecule by quantum mechanical prediction, the heat of sublimation can be represented as the equation (3).⁵

$$\Delta H(sub \lim ation) = a(SA)^2 + b(\sigma_{Tot}^2 v)^{1/2} + c \quad (3)$$

Table 57. Heat of formation based on CDS-4W calculation
--

Commound	-H _(M, 298) ^[a] /	$\Delta_{\rm f} H^{\circ}{}_{({\rm g})}{}^{[{\rm b}]}$	SA ^[c]	$\sigma_{Tot}^2 v^{[d]}$	$\Delta H^{\circ}_{(sub)}^{[e]}$	$\Delta_{\rm f} H^{\circ}{}_{({ m s})}{}^{[{ m f}]}$
Compound	a.u.	/ kJ mol ⁻¹	/ Ų	/(kcal mol ⁻¹) ²	/ kJ mol-1	/ kJ mol ⁻¹
12	892.312186	591.99	209.44	37.05	131.75	460.25
13	837.067508	482.04	198.20	42.60	126.535	355.51
15	1419.085466	229.89	301.14	20.65	211.115	18.78
17	1187.063864	1056.07	280.96	27.00	193.55	862.52
18	1190.309466	621.85	237.13	20.62	142.61	479.24
20	931.991124	382.77	199.22	24.50	113.36	269.41

[a] CBS-4M electronic enthalpy; [b] gas phase enthalpy of formation; [c] surface area; [d] electrostatic potential of the molecular surface; [e] heat of sublimation based on B3PW91/6-31G(d,p) level; [f] standard solid state enthalpy of formation.

	<i>-H</i> ²⁹⁸ / a.u.	NIST ^[5] / $\Delta_{\rm f} H^{\circ}_{(298\rm K)}$
Н	0.500991	218.2
С	37.786156	717.2
Ν	54.522462	473.1
О	74.991202	249.5
K	599.187712	89.01

Table S8. CBS-4M values and literature values for atomic $\Delta_f H^{\circ}/\text{ kJ mol}^{-1}$

References:

 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Sal-vador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Ba-boul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 09, rev. A.02, Gaussian, Inc., Wallingford, CT, 2009.

- [2] T. K. R. Dennington and J. Millam, GaussView 5, V5.0.8, Semichem Inc., Shawnee Mission, 2009.
- [3] P. J. Lindstrom, W. G. Mallard, NIST Chemistry Webbook, NIST Standard Reference 69, June 2005, National Instituteof Standards and Technology, Gaithersburg, MD(http://webbook.nist.gov).
- [4] P. W. Atkins, Physical Chemistry, Oxford University Press, Oxford, 1982.
- [5] P. Politzer, J. S. Murray, T. Brinck and P. Lane, in Immunoanalysis of Agrochemicals, ACS Symp. Ser. 586, American Chemical Society, Washington, DC, 1994.