Supporting Information

Bio-based Polycarbonates Derived from the Neolignan Honokiol

Kevin T. Wacker, Samantha L. Kristufek, Soon-Mi Lim, Sarosh Kahn, and Karen L. Wooley^{*}

Departments of Chemistry, Chemical Engineering, Materials Science & Engineering, and the Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842-3012, United States

Contents

Additional Materials & Methods	S2
Figure S1. GPC – PHC in DMF (0.05 M LiBr)	S 3
Figure S2. ATR-FTIR PHC – 55 kDa <i>vs</i> honokiol	S4
Figure S3. ATR-FTIR PHCs <i>vs</i> honokiol	S5
Figure S4. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR spectrum for honokiol	S 6
Figure S5. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR spectrum for PHC – 15 kDa	S 7
Figure S6. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR spectrum for PHC – 33 kDa	S 8
Figure S7. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR spectrum for PHC – 55 kDa	S 9
Figure S8. TGA of honokiol <i>vs</i> PHC – 40 kDa	S10
Figure S9. TGA of PHC – 15 kDa	S10
Figure S10. TGA of PHC – 33 kDa	S11
Figure S11. TGA of PHC – 55 kDa	S11
Figure S12. TGA of poly(bisphenol A carbonate) – 21 kDa	S12
Figure S13. TGA of polylactic acid – 30 kDa	S12
Figure S14. DMA of PHC – 23 kDa	S13
Figure S15. DMA of PHC – 31 kDa	S13
Figure S16. DMA of PHC – 37 kDa	S14
Figure S17. DMA composite overlay	S15
Figure S18. DSC of powder samples	S16
Figure S19. DSC of bar samples – 10 °C/min	S16
Figure S20. DSC of bar samples – 40 °C/min	S17
Figure S21. MTS Assay	S18

Additional Materials & Methods for Biological Assays

Coronary venular endothelial cells (CVEC) were kindly provided by Profs. Cynthia J. Meininger and Andreea Trache (Texas A&M Health Science Center, College Station, TX, USA). CVECs were cultured in GIBCO® Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F-12) (Invitroge, Carlsbad, CA) mixed with 10% fetal bovine serum (Sigma Aldrich, St. Louis, MS), 100 U/mL penicillin - 100 U/mL streptomycin - 0.25 mg/mL amphotericin B (Lonza, Walkersville, MD), and 20 units/mL heparin (Midwest Vet Supply, Lakeville, MN). Cells (10 x 10³ cells/well) were plated in 96-well plate (coated with 1% gelatin) and incubated at 37 °C in a humidified atmosphere containing 5% CO₂ for 24 h to adhere. Then, the medium was replaced with a fresh medium 1 h prior to the addition of 20 µL of poly(honokiol carbonate) stock solution (DMSO) to 100 μ L of the medium (final concentrations ranged from 10 - 0.0048 μ M). The cells were incubated with the formulations for 72 h, and then the medium was replaced with 100 μ L of the fresh complete media. MTS combined reagent (20 μ L) was added to each well (Cell Titer 96[®] Aqueous Non-Radioactive Cell Proliferation Assay, Promega Co., Madison, WI). The cells were incubated with the reagent for 2 h at 37 °C in a humidified atmosphere containing 5% CO₂ protected from light. Absorbance was measured at 490 nm using SpectraMax M5 (Molecular Devices Co., Sunnyvale, CA). The cell viability was calculated based on the relative absorbance to the control-untreated cells. IC_{50} values of the polymer could not be determined because high cell-viabilities were observed at the range of the tested concentrations (10 - 0.0048 µM).

Figure S1. SEC traces of PHC in DMF (0.05 M LiBr) eluent.

Figure S2. ATR-FTIR spectra comparing PHC-55 kDa and honokiol.

Figure S3. ATR-FTIR spectra comparing PHC and honokiol.

Figure S4. 1 H (500 MHz) and 13 C (125 MHz) NMR spectra for honokiol.

Figure S5. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra for poly(honokiol carbonate) having a M_n of 15 kDa.

Figure S6. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra for poly(honokiol carbonate) having a M_n of 33 kDa.

Figure S7. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra for poly(honokiol carbonate) having a M_n of 55 kDa.

Figure S8. TGA – Thermal degradation of honokiol and PHC having a M_n of 33 kDa.

Figure S9. TGA – Thermal degradation of PHC having a M_n of 15 kDa.

Figure S10. TGA – Thermal degradation of PHC having a M_n of 33 kDa.

Figure S11. TGA – Thermal degradation of PHC having a M_n of 55 kDa.

Figure S12. TGA – Thermal degradation of poly(BPA carbonate) having a M_n of 21 kDa.

Figure S13. TGA – Thermal degradation of poly(lactic acid) having a M_n of 30 kDa.

Figure S14. DMA – Representative dynamic mechanical analysis of PHC having a M_n of 23 kDa.

Figure S15. DMA – Representative dynamic mechanical analysis of PHC having a M_n of 31 kDa.

Figure S16. DMA – Representative dynamic mechanical analysis of PHC having a M_n of 37 kDa.

Figure S17. DMA – Composite of storage moduli traces collected for each of the PHC samples having M_n values of (a) 23 kDa, (b) 31 kDa, (c) 37 kDa.

Figure S18. DSC traces of powder PHC samples showing T_{gs} all in the range of 60-65 °C.

Figure S19. DSC traces of PHC bars used in DMA analyses showing an increase in T_g higher than powder samples. Heating rate: 10 °C/min.

Figure S20. DSC traces of PHC bars used in DMA analyses showing an increase in T_g with increase in molecular weight. Heating rate: 40 °C/min.

Figure S21. MTS cytotoxicity assays comparing cell viability to control group.