Supplementary Information

Ordered Intermetallic Pt-Cu Nanoparticles for Catalytic CO Oxidation Reaction

Govindachetty Saravanana*, Rohini Khobragadea, Laxmi Chand Nagara, Nitin Labhsetwara

Figure S1. X-ray diffraction profiles of γ -Al₂O₃ and Pt/ γ -Al₂O₃. The simulated solid lines are shown at the bottom for reference purpose.

Figure S1 shows the pXRD profiles of γ -Al₂O₃ and Pt/ γ -Al₂O₃. The characteristic diffraction peaks were obtained for both γ -Al₂O₃ (*Fd*Error!*m*, *a* = 0.79) and Pt/ γ -Al₂O₃ (*Fm*Error!*m*, *a* = 0.3924 nm), consistent with the simulated lines as also shown in Figure S1.

Figure S2. X-ray diffraction profiles of Pt- and Cu- precursors coated γ -Al₂O₃ calcined at 300 and 500 °C for the preparation of intermetallic Pt₃Cu/ γ -Al₂O₃.

Figure S2 shows the pXRD profiles of Pt- and Cu- precursors coated γ -Al₂O₃ calcined at 300 and 500 °C. The characteristic diffraction peaks of intermetallic Pt₃Cu (*Pm*Error!*m*; *a* = 0.3852 nm) were not obtained when the precursors calcined at 300 and 500 °C. The intermetallic Pt₃Cu phase was obtained solely when the precursors calcined at 800 °C (Figure 2 and corresponding discussion in the main text). The resultant products were identified after calcination of the precursors at 300 and 500 °C as γ -Al₂O₃ and Pt. Cu-moieties (metallic Cu or Cu-oxides) were not obtained in both pXRD profiles due to either lower amounts of Cu (0.54 wt.%) or merging of their characteristic diffraction peaks with γ -Al₂O₃. These results infer that the intermetallic Pt₃Cu phase can be achieved only at 800 °C but not at 300 and 500 °C under H₂.

Figure S3. X-ray diffraction profiles of Pt- and Cu- precursors coated γ -Al₂O₃ calcined at 300 and 800 °C for the preparation of intermetallic PtCu/ γ -Al₂O₃.

Figure S3 shows the pXRD profiles of Pt- and Cu-precursors coated γ -Al₂O₃ calcined at 300 and 800 °C. The characteristic diffraction peaks of intermetallic PtCu (*Rm*; *a* = *b* = 0.270 nm; *c* = 1.2918 nm) were not obtained when the precursors calcined at 300 and 800 °C. The intermetallic PtCu phase was obtained solely when the precursors calcined at 500 °C (Figure 2 and corresponding discussion in the main text). The resultant products after calcination of the precursors at 300 °C were identified as γ -Al₂O₃ and Pt. Cu-moieties (metallic Cu or Cu-oxides) were not obtained in both XRD profiles due to likely merging of their characteristic diffraction peaks with Al₂O₃. The resultant products after calcination of the precursors at 800 °C were identified as the mixture of PtCu and PtCu₃. These results infer that the intermetallic PtCu phase can be achieved by the calcination of the precursors only at 500 °C but not at 300 and 800 °C under H₂.

Figure S4. X-ray diffraction profiles of Pt- and Cu- precursors coated γ -Al₂O₃ calcined at 300 and 800 °C for the preparation of intermetallic PtCu₃/ γ -Al₂O₃.

Figure S4 shows the pXRD profiles of Pt- and Cu-precursors coated γ -Al₂O₃ calcined at 300 and 800 °C. The characteristic diffraction peaks of intermetallic PtCu₃ (*Pm*Error!*m*; *a* = 0.3692 nm) were not obtained when the precursors calcined at 300 and 800 °C. The intermetallic PtCu phase was obtained solely when the precursors calcined at 500 °C (Figure 2 and corresponding discussion in the main text). The resultant products after calcination of the precursors at 300 °C were identified as γ -Al₂O₃ and Pt. Cu-moieties (metallic Cu or Cu-oxides) were not obtained in both XRD profiles due to likely merging of their characteristic peaks with γ -Al₂O₃. The resultant products after calcination of the precursors at 800 °C were identified as the mixture of PtCu and PtCu₃. These results infer that the intermetallic PtCu₃ phase can be achieved by the calcination of the precursors only at 500 °C but not at 300 and 800 °C under H₂.

ICP-MS results

	Calculated, Pt		Estimated, Pt		Calculated, Cu		Estimated, Cu	
Sample	Weight (mg)	Weight %	Weigh t (mg)	Weight %	Weight (mg)	Weight %	Weigh t (mg)	Weight %
Pt/Al ₂ O ₃	0.5	5	0.492	4.92	-	-	-	-
Pt ₃ Cu/Al ₂ O ₃	0.5	5	0.513	5.13	0.054	0.54	0.062	0.62
PtCu/Al ₂ O ₃	0.5	5	0.482	4.82	0.163	1.63	0.156	1.56
PtCu ₃ /Al ₂ O ₃	0.5	5	0.522	5.22	0.5	5	0.530	5.30

Table 1. Calculated and estimated amounts of Pt and Cu in intermetallic Pt-Cu catalysts