Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

for

Investigation of the photoinduced electron injection processes for natural dye-sensitized solar cells: The impact of anchoring groups

by

S. Akın,^{a,b} S. Açıkgöz,^a M. Gülen,^{a,b} C. Akyürek^c and S. Sönmezoğlu^{a,b*}

^aDepartment of Metallurgical and Materials Engineering, Karamanoğlu Mehmetbey University, Karaman, Turkey

^b Nanotechnology R&D Laboratory, Karamanoğlu Mehmetbey University, Karaman, Turkey ^c Department of Food Process, Karamanoğlu Mehmetbey University, Karaman, Turkey

Fig. S1 The photos of natural dyes in moldy aqueous form after several days.

Fig. S2 The FTIR transmittance spectra of bare (T) and natural dye adsorbed TiO_2 (D#@T) samples in the frequency range of 4000–400 cm⁻¹. The insets show the higher magnification of functional peaks at related wavenumber range.

Fig. S3 The Cyclic voltammetry curves of extracted dyes at a scan rate of 20 mV.s $^{-1}$.

Fig. S4 The continuous CV cycles of D8 dye 50 times at 20 mV.s⁻¹ at the same potential range.

Samples	E _c (eV)	E _v (eV)	ΔE* (eV)	E _{Oxi} (D) (V)	E _{Red} (A) (V)	∆G° (eV)
D1	-2.77	-4.95	2.18	0.55	-0.40	-1.23
D2	-3.16	-4.81	1.65	0.41	-0.40	-0.84
D3	-3.19	-4.86	1.67	0.46	-0.40	-0.81
D4	-3.22	-4.87	1.65	0.47	-0.40	-0.78
D5	-2.84	-4.94	2.10	0.54	-0.40	-1.16
D6	-2.61	-4.91	2.30	0.51	-0.40	-1.39
D7	-3.07	-4.97	1.90	0.57	-0.40	-0.93
D8	-3.39	-4.76	1.37	0.36	-0.40	-0.61
D9	-3.17	-5.01	1.84	0.61	-0.40	-0.83

Table S1 Electrochemical data of natural dyes and calculated driving force energies. E_C : conduction band energy; E_V : valance band energy; ΔE^* : electronic excitation energy; $E_{Oxi}(D)$: oxidation potentials of electron and donor; $E_{Red}(A)$: reduction potentials of electron and acceptor; ΔG^o : driving force.

Samples	A ₁ (kCnts)	τ ₁ (ns)	A ₂ (kCnts)	τ ₂ (ns)	〈τ〉 (ns)	χ²
D2	4.36	2.04	6.60	0.65	1.60	1.18
D3	5.62	2.00	8.75	0.65	1.55	1.10
D4	2.70	2.12	4.94	0.56	1.50	1.21
D5	6.70	2.39	8.33	0.68	1.94	1.05
D7	7.81	1.92	10.9	0.72	1.50	1.16
D8	7.85	3.49	4.87	0.78	3.16	0.97
D9	1.84	0.38	4.12	0.17	0.27	1.04

Table S2 Decay parameters of natural dyes on a glass substrate. A₁ and A₂: amplitude of each component; τ_1 and τ_2 : corresponding lifetimes; $\langle \tau \rangle$: average lifetime; χ^2 : fitting parameters; k_{ET}: rate constant.