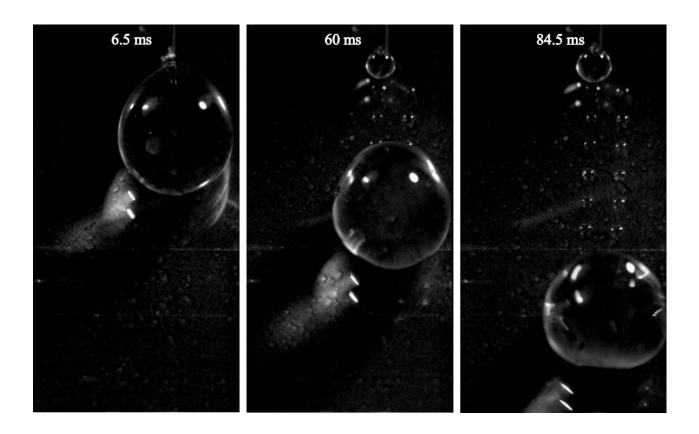
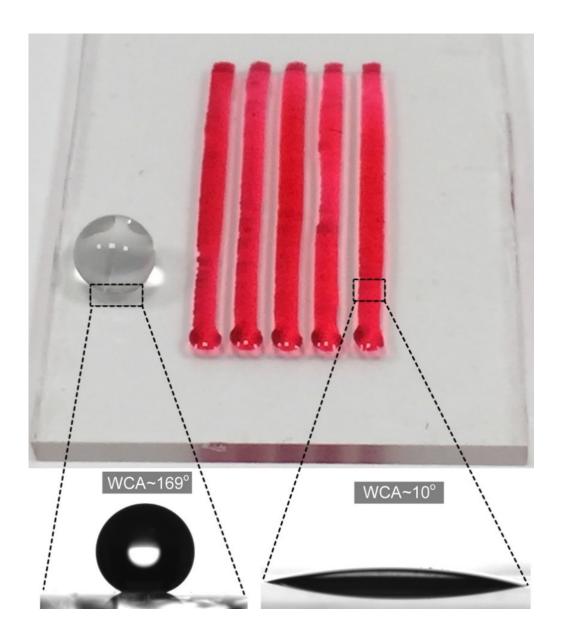
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016


Electronic Supplementary Information

Robust superhydrophilic patterning of superhydrophobic ORMOSIL surfaces for high-throughput on-chip screening applications


Pinar Beyazkilic, ab Urandelger Tuvshindorj, ab Adem Yildirim, ab Caglar Elbuken ab and Mehmet Bayindir abc

^aUNAM-National Nanotechnology Research Centre, Bilkent University, 06800 Ankara, Turkey ^bInstitute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey ^cDepartment of Physics, Bilkent University, 06800, Ankara, Turkey

*E-mail: bayindir@nano.org.tr

Fig. S1 Snapshots from high-speed recording (see Video SV1) at 6.5^{th} , 60^{th} , and 84.5^{th} milliseconds (ms) for the surface with 200 μ m circular patterns.

Fig. S2 Patterned ormosil surface after 5 month-storage period. Spherical droplet on the superhydrophobic region and rhodamine 6G aqueous solution on the superhydrophilic stripe patterns with corresponding WCA values.

Fig. S3 (a) Fluorescent microscope image of GFP-expressing E. coli cells on the superhydrophilic patterns of ORMOSIL with square wetted patterns (1x1 mm) (b) Close-up view of one wetted pattern with adhered bacteria. Fluorescent signal of GFP from individual bacteria cells with 2 µm dimensions were clearly observed.