Supporting Information

A Highly Sensitive and Selective Turn-on Fluorescent Probe

for Pb(II) ion based on Coumarin-quinoline Platform

Guangfu Wu ^{a, b}, Mingxin Li ^a, Jieji Zhu ^a, King Wai chiu Lai ^b, Qingxiao Tong ^{a,*}, Feng Lu ^{a,*}

Contents

Materials and Instrument

Preparation of T1

Characterization of T1

Job's plot

Determination of K_d

Detection limit

Stability of imine of T1

Fluorescence quantum yield of T1

References

Materials and Instrument

Unless otherwise noted, materials were obtained from commercial suppliers and were used without further purification. ¹H NMR spectra were recorded on a Bruker Avance 400 spectrometer (400 MHz) using TMS as internal standard. Mass spectra were obtained with Waters GCT premier, LCMS-2010 and GCT CA127 Micronass UK, Waters LCT Premier XE. Steady-state emission spectra were recorded at ambient temperature on a Hitachi F-7000 Spectrophotometer and UV/Vis spectra were recorded on a Perkin-Elmer Lambda 950 UV-visible spectrophotometer. IR spectra were obtained on a Nicolet AVATAR 360FT-IR.

Preparation of T1

Scheme S1 Synthesis route of T1

8-BnT-HQC^{S1} (1 mmol, 0.34 g) and 3-AC^{S2} (1.1 mmmol, 0.18 g) acetic acid (0.4 mL) were added to the solution of dry methanol (10 mL), refluxing for 3 h and cooling to room temperature. Obtained residue by filtrate was further refined by refluxing in absolute CH₃OH, affording the faint yellow solid (0.28 g, 68%). ¹H NMR (400 MHz, CD₃CN, TMS), δ H [ppm]: 8.39 (dd, J = 13.7, 8.5 Hz, 2H), 7.76 (dd, J = 9.6, 8.5 Hz, 2H), 7.60 (d, J = 7.5 Hz, 2H), 7.58 (s, 1H), 7.53 (d, J = 6.2 Hz, 1H), 7.51 (t, J = 7.2 Hz, 1H), 7.31-7.35 (m, 4H), 7.07 (dd, J = 12.6, 8.5 Hz, 2H), 6.08 (d, J = 5.7 Hz, 2H), 5.07 (s, 2H), 5.06 (s, 2H). ESI-Mass (m/z): [M+H⁺]⁺ Calcd. for C₂₉H₂₁N₅O₃, 488.51, found 489.73.

Characterization of T1

Fig. S1 ¹H NMR spectra of T1 in the absence and presence of Pb^{2+} in CD₃CN

Fig. S3 IR spectra of T1 and its Pb2+-complex

Job's plot

Fig. S4. The Job's plot of T1 with Pb²⁺, where the difference in I₄₆₆ nm was plotted against the χ_{Pb} at an invariant total concentration of 20 μ M in buffer solution (CH₃CN:H₂O = 95:5, v/v, 10 mM HEPES, pH 7.2).

Determination of K_d

The apparent dissociation constants (K_d) of **T1** with Pb²⁺ was determined using the nonlinear least-squares analysis⁸³ based on a 1:1 complex expression:

$$F = F_0 + \frac{F_{\text{max}} - F_0}{2} \left\{ 1 + \frac{C_M}{C_L} + \frac{1}{K_S C_L} - \left[\left(1 + \frac{C_M}{C_L} + \frac{1}{K_S C_L} \right)^2 - 4 \frac{C_M}{C_L} \right]^{\frac{1}{2}} \right\}$$

Where F and F_0 are the fluorescence intensities of **T1** in the presence and absence of Pb²⁺, C_M and C_L are the concentrations of Pb²⁺ and **T1**, and K_s is the stability constant.

Fig. S5 A nonlinear fitting curve of fluorescence intensity of T1 versus [Pb²⁺]/[T1] at 466 nm.

Detection limit

The calibration curve was obtained by plotting $[Pb^{2+}]$ -I₄₆₆ when adding different concentration of Pb²⁺ (from 6 μ M to 20 μ M) to T1 (20 μ M) in buffer solution (CH₃CN:H₂O = 95:5, v/v, pH 7.2) under room temperature. The results were summarized based on 15 measurements.

Fig. S6 A linear fitting curve of fluorescence intensity of T1 versus [Pb²⁺] at 466 nm.

Stability of imine of T1

Figure S7. The fluorescence intensity at 466 nm of T1 and T1-Pb²⁺ with 3 h. Black squre: T1 (20 μ M) was stored in CH₃CN/H₂O (95/5) for 3 h. The fluorescence intensity at 466 nm was recorded for 3 h. Red round: Pb²⁺ (40 μ M) was added to fresh prepared T1 solution (20 μ M), the fluorescence intensity was recorded for 3 h. Blue triangle: T1 (20 μ M) was stored in CH₃CN/H₂O (95/5) for 3 h, followed by the addition of Pb²⁺ (40 μ M). Then the fluorescence intensity at 466 nm was recorded for 3 h.

Fluorescence quantum yields of T1

The quantum yields were calculated according to the following equation: S4-S5

$$\Phi = \Phi_R \frac{A_R F_S n_S^2}{A_S F_R n_R^2}$$

in which the subscript R and S stand for standard samples (quinine sulfate in 0.1 M H_2SO_4) and target sample (T1), respectively. Φ is the quantum yield, F is the integrated emission spectrum. n is the refractive index for the solvent. Quantum yields of T1 were determined using quinine sulfate as the reference. Quinine sulfate in 0.1 M H_2SO_4 was estimated to 0.54.

Sensing material	Target	Medium	pН	K _d (µM)	Reference
4,4-dimethyl-4H-5-oxa-1,3-dithia-6,11- diazacyclopenta[a]anthracen-2-one	Pb ²⁺	MeOH/H ₂ O/ NEt ₄ OH (2/1/7)	<mark>4-1</mark> 0	23	S6
Leadfluor-1	Pb ²⁺	HEPES	7	23±4	S 7
2-Ferrocenylimidazo[4,5-b]pyridine	Pb ²⁺	CH ₃ CN	-	1.6	S 8
4-(4-Pyridineethenyl) tetrathiafulvalene	Pb ²⁺	CH ₃ CN	-	3.8	S 9
Ferrocene-imidazophenazine dyad	Pb ²⁺	CH ₃ CN/H ₂ O (9/1)	-	0.28	S10
Coumarin-quinoline Platform	Pb ²⁺	CH ₃ CN/H ₂ O (95/5)	7.2	0.1	This work

Table S1 Disassociation constant (K_d) some fluorescent probes for Pb(II) detection

Reference:

[S1] A. B. Mandal, N. R. Chereddy and S. Thennarasu, *Dalton Trans.*, 2012, 41, 11753-11759.

[S2] G. Kokotos and C. Tzougraki, J. Heterocyclic Chem., 1986, 23, 87-92.

[S3] a) H. Gampp, M. Maeder, C. J. Meyer and A. D. Zuberbühler, *Talanta*, 1985, 32, 1133-1139;

b) A. R. Reddi, T. R. Guzman, R. M. Breece, D. L. Tierney and B. R. Gibney, *J. Am. Chem. Soc.*, 2007, **129**, 12815-12827.

[S4] G. A. Crosby and J. N. Demas, J. Phys. Chem., 1971, 75, 991-1024.

[S5] E. Cogné-Laage, J. F. Allemand, O. Ruel, J. B. Baudin, V. Croquette, M. Blanchard-Desce and L. Jullienet, *Chem. Eur. J.*, 2004, **10**, 1445-1455.

- [S6] L. Marbella, B. Serli-Mitasev and P. Basu, Angew. Chem., Int. Ed., 2009, 48, 3996-3998.
- [S7] Q. He, E. W. Miller, A. P. Wong and C. J. Chang, J. Am. Chem. Soc., 2006, 128, 9316-9317.
- [S8] F. Zapata, A. Caballero, A. Espinosa, A. Tárraga and P. Molina, Org. Lett., 2008, 10, 41-44.

[S9] H. Xue, X. J. Tang, L. Z. Wu, L P. Zhang and C. H. Tung, J. Org. Chem., 2005, 70, 9727-9734.

[S10] M. Alfonso, A. Tárraga and P. Molina, J. Org. Chem., 2011, 76, 939-947.