Wettability and Permeation of Ethanol/water Mixture on Porous Mesh Surface

Liping Heng,^{a, b} Jie Liu,^a Ruixiang Hu,*^a Ke-Yu Han,^{a, b} Lian-Lian Guo,^a

Ye Liu,^a Meng-Ying Li,^a Qiao Nie^a

a College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan Province 410081, China b School of Chemistry and Environment, Beihang University, Beijing 100191, China

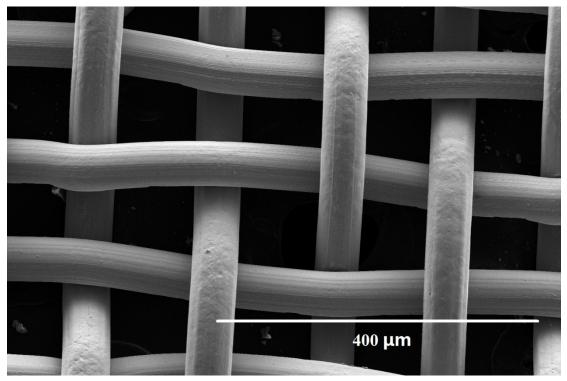


Figure S1 Low magnification SEM image of the Cu mesh, the diameter of copper wire is about 51 μ m and the average width of a square in the mesh is about 85 μ m.

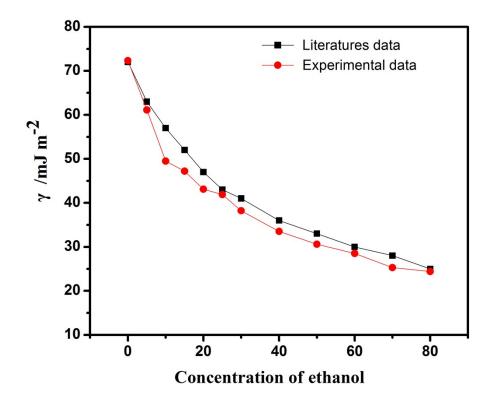


Figure S2 The surface tension values of different concentration ethanol/water mixed solution

Element	X _{OH} =0 (%)	X _{OH} =0.3 (%)	X _{OH} =0.5 (%)	X _{OH} =0.7 (%)	X _{OH} =1.0 (%)
С	80.8	78.5	73.4	53.8	44.0
0	7.2	9.8	12.2	24.1	26.9
S	6.9	6.5	7.3	7.2	8.3

Table S1 EDX element content analysis.

Table S2 Dynamic CA of the samples, θ_A is advancing angle, θ_R is receding angle, θ_H is CA hysteresis, θ_S is sliding angle.

X _{OH}	$ heta_A(^{\circ})$	$\theta_R(^{\mathrm{o}})$	$ heta_{H}(^{\circ})$	$\theta_{S}(^{\circ})$
0.5	150.3	122.5	27.8	26.6
0.7	156.6	148.2	8.4	6.3
1.0	/	/	/	/