Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Element	CSAC	MCSAC
Р	2.62%	6.757%
K	939.76 ppm	958.69 ppm
Са	1518.87 ppm	0.31 %
Fe	0.405 ppm	92.58 %
Cu	-	-
Zn	0.21%	-
Cl	-	0.25%

Table SM1. EDXRF analyses of CSAC and MCSAC

Table SM2. Description of equations used in the Manuscript	

Equation/model name	Mathematical expression	Parameters	Equation no.
Helium density (p _{He}) measurement	$ \rho_{Hg} = M/V_s $	M is the mass of sample, and $V_{\rm s}$ is the sample volume	SM1
	$\rho_{He} = M/V_s'$	M is the mass of sample, V_s is the sample volume inaccessible to helium.	SM2
Dubinin-Radushkevich equation	$\log W = \log W_0 - D \log^2 \left(\frac{p^0}{p}\right)$	W stands for micropore volume filled with liquid N_2 when the relative pressure is p/p^0 and W_0 is the total micropore volume. D stands for a characteristic constant for the microporous structure of the adsorbent	SM3
Total pore volume (V _T)	$V_{\rm T} = \frac{1}{\rho_{Hg}} - \frac{1}{\rho_{He}}$	ρ_{Hg} and ρ_{He} are mercury and helium densities	SM4
Pseudo-first-order rate equation (linear)	$\ln\left(\frac{q_e - q_t}{q_e}\right) = -k_1 t$	q_e is the equilibrium adsorption capacity, q_t is the adsorption capacity at time 't', k_1 is the rate constant, t is time	SM5
Pseudo-first-order rate equation (non-linear)	$q_t = q_e \left(1 - e^{-k_1 t}\right)$	q_e is the equilibrium adsorption capacity, q_t is the adsorption capacity at time 't', k_1 is the rate constant, t is time	SM6

Pseudo-second-order rate equation (linear)	$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$	t = time, k_2 is pseudo-second-order adsorption rate constant (g mg ⁻¹ min ⁻¹), q_e is the amount of 2-NP adsorbed at equilibrium and q_t the amount of 2-NP adsorbed at time "t".	SM7
Freundlich isotherm model	$q_e = K_F C_e^{1/n}$	q_e is the 2-NP amount adsorbed per unit weight of adsorbent (mg/g), K _F and 1/n are constants, C _e is the equilibrium 2-NP concentration	SM8
Langmuir isotherm model	$Q_e = \frac{Q^0 b C_e}{1 + b C_e}$	q _e is the 2-NP amount adsorbed per unit weight of adsorbent (mg/g), C _e is the 2-NP equilibrium concentration in solution (mg/L), Q ⁰ is the monolayer adsorption capacity (mg/g) and constant b is related to the net enthalpy, H, of adsorption (b $\propto e^{-\Delta H/RT}$). More precisely, "b" is the reciprocal of concentration at which half saturation is attained.	SM9
Sips isotherm model	$Q_{e} = \frac{K_{LF}C_{e}^{n_{LF}}}{1 + (a_{LF}C_{e})^{n_{LF}}}$	K_{LF} , a_{LF} and n_{LF} are the Sips constants	SM10

Equation	Parameters	Equation No.
$t_{x} = \frac{V}{F_{m}}$	F _m is the mass flow rate expressed as mass per unit cross-sectional bed	SM11
$t_{\delta} = \frac{\overline{V}_x - \overline{V}_b}{F_m}$	V_x , is the total effluent mass quantity per unit adsorbent area when adsorbent is approaching saturation, V_b is total effluent mass quantity per unit adsorbent area at breakpoint, F_m is the mass flow rate expressed as mass per unit cross-sectional bed	SM12
$\frac{\delta}{D} = \frac{t_{\delta}}{t_x - t_b}$	D is the ratio of carbon bed depth, t_b is the time required for initial PAZ formation, t_{δ} is the time required for the zone moving down to its own length in the column, t_x is the total time consumed by the primary adsorption zone establishment	SM13
$f = 1 - \frac{t_b}{t_\delta}$	f is the fractional capacity	SM14
$\delta = D \left(1 - \frac{t_b}{t_x} \right)$	δ is the length of the primary adsorption zone, D is the ratio of carbon bed depth, t _x is the total time consumed by the primary adsorption zone establishment	SM15
Percent Saturation = $\frac{D + \delta(f - 1)}{D} *$ 100	-	SM16
Bed Volume = <u>Weight of Carbon (Kg)</u> <u>Carbon bulk density (Kg/m³)</u>	_	SM17
$\frac{Bed \ volume}{Flow \ rate}$	-	SM18
Carbon usage rate (Kg/L) = <u>Weight of carbon in columg (g)</u> <u>Volume of breakthrough (L)</u>		SM19

Table SM3. Fixed-bed column parameters and equations used for 2-NP removal by CSAC

* 1000	

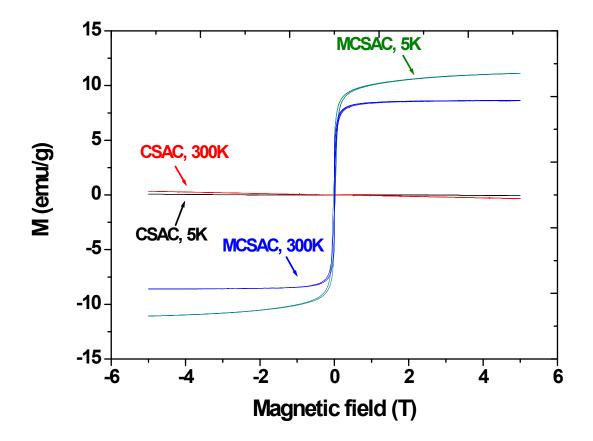


Figure SM1. Hysteresis loops of CSAC and MCSAC at 5 and 300 K.

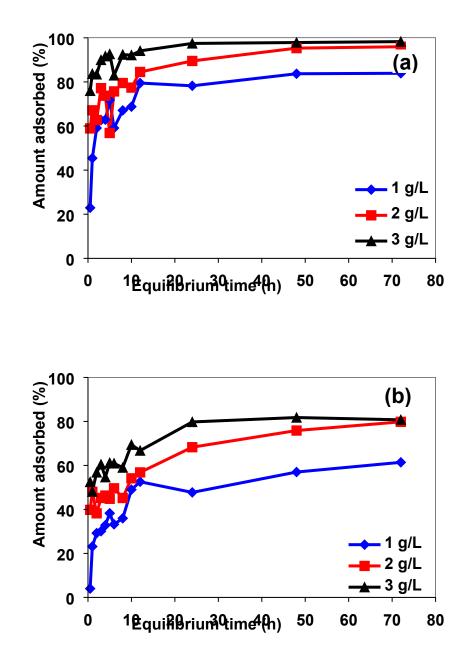


Figure SM2. Effect of adsorbent dose on 2-NP adsorption by (a) CSAC and (b) MCSAC [pH 4.0; 2-NP concentration= 1x10⁻³ M; temperature= 25 °C; particle size= 50-100 B.S.S mesh]

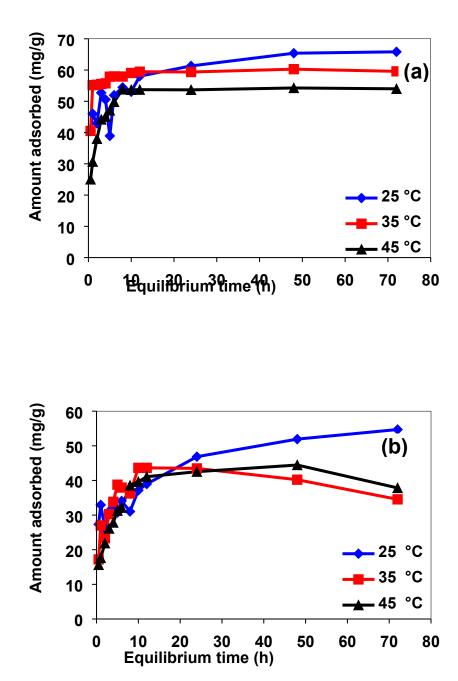


Figure SM3. Effect of temperature on 2-NP adsorption by (a) CSAC and (b) MCSAC [pH 4.0; 2-NP concentration= $1x10^{-3}$ M; adsorbent dose= 2 g/L; particle size= 50-100 B.S.S mesh]

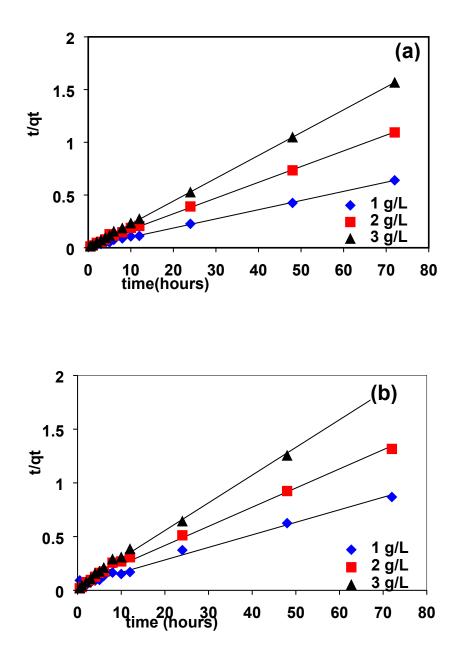
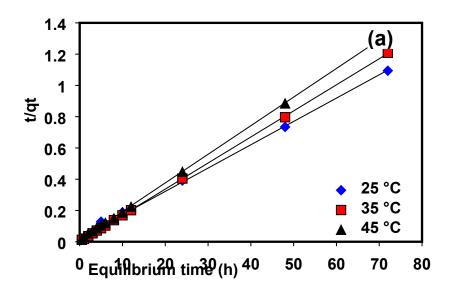



Figure SM4. Pseudo-second-order kinetic plots for 2-NP removal by (a) CSAC and (b) MCSAC at adsorbent dose [initial 2-NP concentration = 1×10^{-3} M; pH = 4.0, adsorbent dose = 2 g/L; particle size = 50-100 B.S.S. mesh]

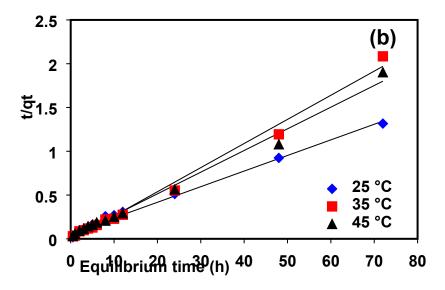


Figure SM5. Pseudo-second-order kinetic plots for 2-NP removal by (a) CSAC and (b) MCSAC at different temperatures [initial 2-NP concentration = $1x10^{-3}$ M; pH = 4.0, adsorbent dose = 2 g/L; particle size = 50-100 B.S.S. mesh]

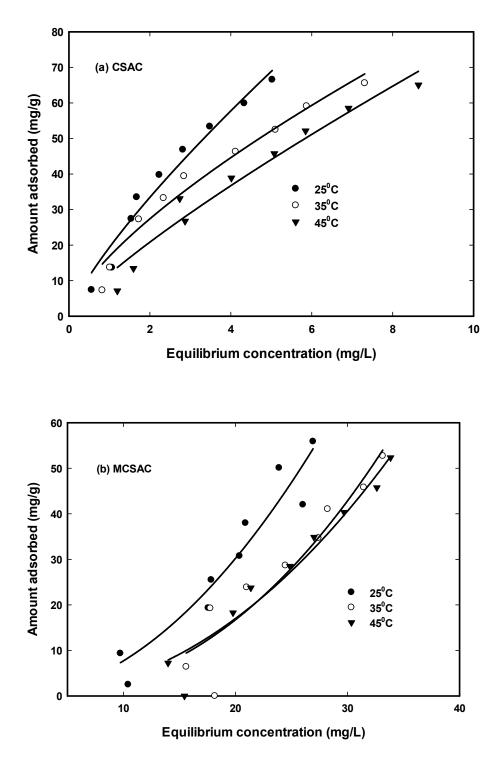


Figure SM6. Freundlich adsorption isotherm of 2-NP by CSAC at different temperatures [pH= 4.0; initial 2-NP concentration range= 1x10⁻⁴-1x10⁻³ M; adsorbent concentration= 2 g/L; particle size= 50-100 B.S.S. mesh]

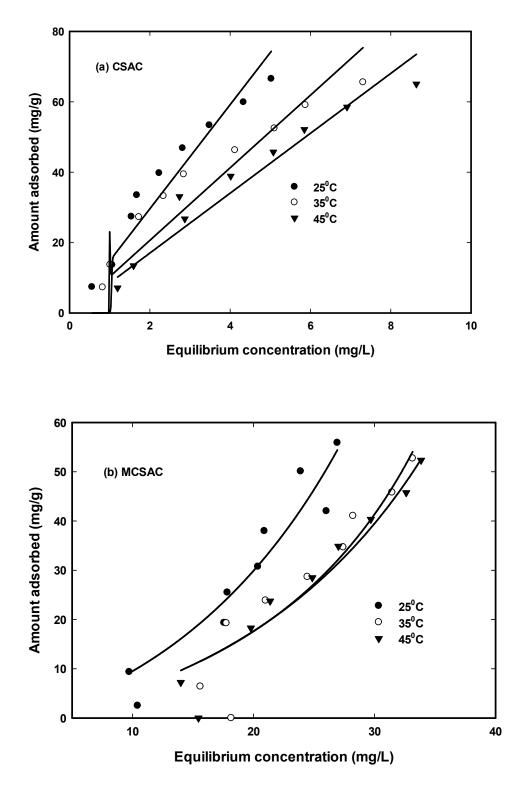


Figure SM7. Redlich Peterson adsorption isotherm of 2-NP by CSAC at different temperatures [pH= 4.0; initial 2-NP concentration range= 1x10⁻⁴-1x10⁻³ M; adsorbent concentration= 2 g/L; particle size= 50-100 B.S.S. mesh]

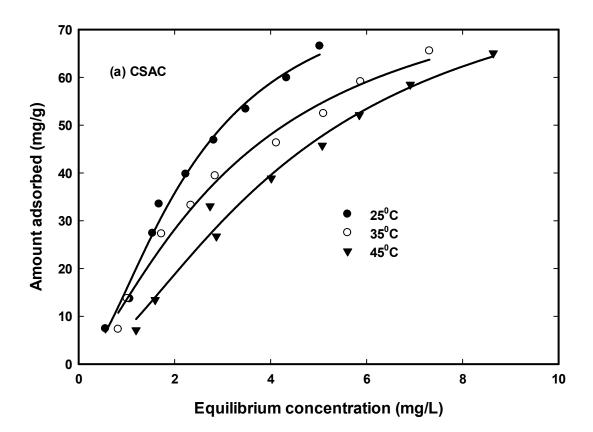


Figure SM8. Koble adsorption isotherm of 2-NP by CSAC at different temperatures [pH= 4.0; initial 2-NP concentration range= 1x10⁻⁴-1x10⁻³ M; adsorbent concentration= 2 g/L; particle size= 50-100 B.S.S. mesh]

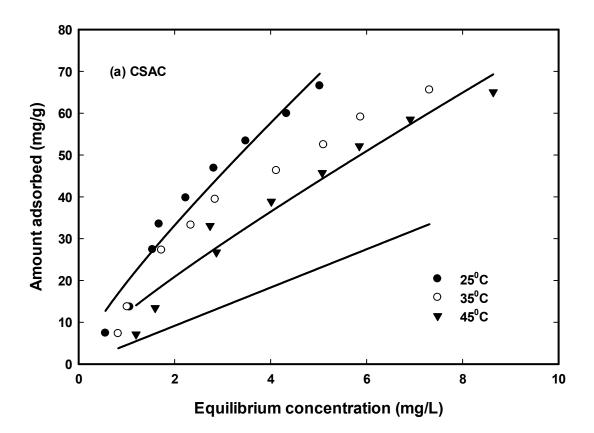


Figure SM9. Toth adsorption isotherm of 2-NP by CSAC at different temperatures [pH= 4.0; initial 2-NP concentration range= 1x10⁻⁴-1x10⁻³ M; adsorbent concentration= 2 g/L; particle size= 50-100 B.S.S. mesh]

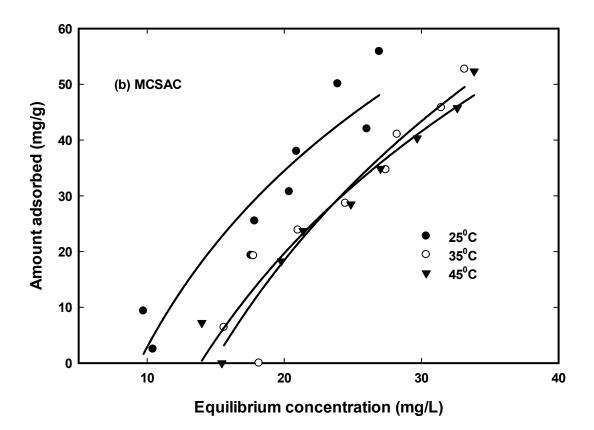


Figure SM10. Temkin adsorption isotherm of 2-NP by CSAC at different temperatures [pH= 4.0; initial 2-NP concentration range= 1x10⁻⁴-1x10⁻³ M; adsorbent concentration= 2 g/L; particle size= 50-100 B.S.S. mesh]