Electronic Supplementary Information Flow trifluoromethylation of carbonyl compounds by Ruppert-Prakash reagent and its application for pharmaceuticals, Efavirenz, and HSD-016

Satoshi Okusu, Kazuki Hirano, Yoshimasa Yasuda, Etsuko Tokunaga and Norio Shibata*

Department of Nanopharmaceutical Sciences & Department of Life and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan

Experimental Section

General Methods:

All reactions were performed in oven-dried glassware. Solvents were transferred via syringe. A 7×146 mm Pasteur pipette (IWAKI) or 3×50 mm glass column (EYELA) were filled with base/Celite 503 (Kishida Chemical Co., Ltd.). A syringe pump (YMC) was used. All reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica-gel (60-F254). The TLC plates were visualized with UV light and 7% phosphomolybdic acid or KMnO₄ in water/heat. Column chromatography was carried out on a column packed with silica-gel 60N spherical neutral size 63-210 µm. The ¹H-NMR (300 MHz), ¹⁹F-NMR (282 MHz), ¹³C-NMR (100.6 MHz or 125.8 MHz) spectra for solution in CDCl₃ were recorded on a Buruker Avance 600 and a Varian Mercury 300. Chemical shifts (δ) are expressed in ppm downfield from internal TMS, CHCl₃ or CClF₃. HPLC analyses were performed on a JASCO U-2080 Plus using 4.6 x 250 mm CHIRALPAK OD-3 column. Mass spectra were recorded on a SHIMADZU GCMS-QP5050A. Optical rotations were measured on a HORIBA SEPA-300. Mass spectra were recorded on a SHIMADZU GCMS-QP5050A or SHIMADZU LCMS-2010EV. Infrared spectra were recorded on a JASCO FT/ IR-200 spectrometer. Melting points were recorded on a BÜCHI Melting Point M-565. The ketone **1p** was prepared according to literature¹. The ketone **1q** was prepared according to literature². The catalyst A was prepared according to literature³.

¹ H. Kawai, T. Kitayama, E. Tokunaga, N. Shibata, Eur. J. Org. Chem. 2011, 5959.

² J. S. Xiang, E. Saiah, S. Y. Tam, J. C. Mckew, L. Chen, M. Ipek, K. Lee, H.-Q. Li, J. Li, W. Li, T. S. Mansour, V. Suri, R. Vargas, Y. Wu, Z.-K. Wan, J. Lee, E. Binnun, D. P. Wilson, WO2007092435, 2007.

³ T. Tozawa, H. Nagao, Y. Yamane, T. Mukaiyama, Chem. Asian J. 2007, 2, 123.

1-(2,5-Dichlorophenyl)-3-cyclopropylprop-2-yn-1-ol (S1)

To a solution of cyclopropylacetylene (1.02 mL, 12.0 mmol, 1.0 equiv) in THF (60 mL) was added *n*BuLi (1.35 M in *n*-hexane) (8.64 mL, 12.0 mmol, 1.0 equiv) dropwise at -78 °C under nitrogen atmosphere. After the reaction mixture was stirred at -78 °C for 1 h, 2,5-dichlorobenzaldehyde (2.10 g, 12.0 mmol, 1.0 equiv) in THF (10 mL) was added dropwise at -78 °C. Upon stirring at same temperature for 1 h, the reaction mixture was stirred at ambient temperature for 1h. Then, it was concentrated under reduced pressure, extracted with ethyl acetate, washed with brine, dried over Na₂SO₄, filtered, concentrated, and purified by column chromatography on silica gel (*n*-hexane/ethyl acetate = 90/10) to give **S1** (2.69 g, 93%) as a white solid.

¹H NMR (CHCl₃, 300 MHz) δ 0.74-0.82 (m, 4H), 1.31 (brs, 1H), 2.41 (s, 1H), 5.70 (s, 1H), 7.22-7.31 (m, 2H), 7.72 (s, 1H); ¹³C NMR (CHCl₃, 100.6 MHz) δ -0.5, 8.4, 61.7, 73.3, 91.3, 128.3, 129.4, 130.7, 130.8, 133.1, 140.1; IR (KBr) 3275, 2233, 1888, 1587, 1566, 1462, 1396, 1358, 1289, 1252, 1186, 1156, 1132, 1098, 1052, 1011, 887, 861, 809, 708, 676, 557, 533 cm⁻¹; mp = 59.8-60.5 °C (CHCl₃); MS (EI, *m/z*) 240 (M⁺), HRMS (EI) calcd. for C₁₂H₁₀Cl₂O (M⁺): 240.0109 Found: 240.0080.

1-(2,5-Dichlorophenyl)-3-cyclopropylprop-2-yn-1-one (1q)

To a stirred solution of **S1** (2.69g, 11.2 mmol) in CH_2Cl_2 (83 mL) was added activated manganese dioxide (7.58 g, 78.4 mmol, 7.0 equiv) at room temperature under nitrogen atmosphere. After 24 h, the reaction mixture was filtered over Celite pad with CH_2Cl_2 . The filtrate was concentrated and purified by column chromatography on silica gel (*n*-hexane/ethyl acetate = 90/10) to give **1q** (2.68 g, 99%) as a white solid.

¹H NMR (CHCl₃, 300 MHz) δ 1.05-1.08 (m, 4H), 1.51-1.61 (m, 1H), 7.39 (m, 2H), 7.90 (s, 1H); ¹³C NMR (CHCl₃, 100.6 MHz) δ 0.2, 10.1, 76.8, 103.5, 131.4, 131.9, 132.5, 132.7, 132.8, 137.2, 175.2; IR (KBr) 3749, 3089, 2690, 2510, 2205, 1931, 1813, 1615, 1456, 1384, 1262, 1184, 1036, 931, 837, 803, 749, 670, 638, 570 cm⁻¹; mp = 40.0-40.2 °C (CHCl₃); MS (ESI, *m/z*) 239 [M+H]⁺, HRMS (ESI) calcd. for $C_{12}H_9Cl_2O$ (M)⁺: 239.0030 Found: 239.0022.

General procedure for the trifluoromethylation to carbonyl compounds by KOH/Celite 503.

KOH/Celite 503 (1/1, 100 mg) was packed into the Pasteur pipette (7 $\phi \times 146$ mm). Carbonyl compound **1a-q** (0.2 mmol) and Me₃SiCF₃ (0.4 mmol, 59.1 µL, 2.0 equiv) in DMF (2.0 mL) was fed into the Pasteur pipette using the syringe. The product was run out using 4.0 mL of DMF and quenched with sat. NH₄Cl aq. The aqueous layer was extracted with Et₂O, and the combined organic layers was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, and purified by column chromatography on silica gel to give α -trifluoromethyl alcohol **2a-q**.

2,2,2-Trifluoro-1,1-diphenylethanol (2a)

KOH/Celite 503 (1/1, 100 mg) was packed into the Pasteur pipette (7 $\phi \times 146$ mm). **1a** (0.2 mmol, 36.4 mg) and Me₃SiCF₃ (0.4 mmol, 59.1 µL, 2.0 equiv) in DMF (2.0 mL) was fed into the Pasteur pipette using the syringe. The product was run out using 4.0 mL of DMF and quenched with sat. NH₄Cl aq. The aqueous layer was extracted with Et₂O, and the combined organic layers was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, and purified by column chromatography on silica gel (*n*-hexane/ethyl acetate = 98/2) to give **2a** (39.9 mg, 79%) as a colorless oil.

This compound has been previously synthesized and characterized.⁴

¹H NMR (CDCl₃, 300 MHz) δ 2.89 (s, 1H), 7.35-7.38 (m, 6H), 7.48-7.51 (m, 4H); ¹⁹F NMR (CDCl₃, 282 MHz) δ -74.8 (s, 3F); MS (EI, *m/z*) 252 (M⁺).

2,2,2-Trifluoro-1,1-bis(4-methylphenyl)ethanol (2b)

KOH/Celite 503 (1/1, 100 mg) was packed into the Pasteur pipette (7 $\phi \times 146$ mm). **1b** (0.2 mmol, 42.1 mg) and Me₃SiCF₃ (0.4 mmol, 59.1 µL, 2.0 equiv) in DMF (2.0 mL) was fed into the Pasteur pipette using the syringe. The product was run out using 4.0 mL of DMF and quenched with sat. NH₄Cl aq. The aqueous layer was extracted with Et₂O, and the combined organic layers was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, and purified by column chromatography on silica gel (*n*-hexane/ethyl acetate = 98/2) to give **2b** (37.6 mg, 67%) as a white solid.

¹H NMR (CDCl₃, 300 MHz) δ 2.35 (s, 6H), 2.79 (s, 1H), 7.16 (d, J = 8.4 Hz, 4H), 7.36 (d, J = 7.8

⁴ G. K. S. Prakash, J. Hu, G. A. Olah, Org. Lett. 2003, 5, 3253.

Hz, 4H); ¹³C NMR (CHCl₃, 100.6 MHz) δ 21.1, 79.2 (q, J = 28.5 Hz), 125.4 (q, J = 286 Hz), 127.3 (d, J = 2.0 Hz), 128.9, 136.6, 138.4; ¹⁹F NMR (CDCl₃, 282 MHz) δ -75.0 (s, 3F); IR (KBr) 3545, 2926, 2359, 1917, 1734, 1718, 1700, 1684, 1653, 1635, 1617, 1559, 1507, 908, 816, 735, 668, 620, 593 cm⁻¹; mp = 60.0-61.0 °C (CHCl₃); MS (EI, m/z) 280 (M⁺), HRMS (EI) calcd. for C₁₆H₁₅F₃O₂ (M⁺): 280.1075 Found: 280.1086.

2,2,2-Trifluoro-1,1-bis(3-nitrophenyl)ethanol (2c)

KOH/Celite 503 (1/1, 100 mg) was packed into the Pasteur pipette (7 $\phi \times 146$ mm). **1c** (0.2 mmol, 54.4 mg) and Me₃SiCF₃ (0.4 mmol, 59.1 µL, 2.0 equiv) in DMF (2.0 mL) was fed into the Pasteur pipette using the syringe. The product was run out using 4.0 mL of DMF and quenched with sat. NH₄Cl aq. The aqueous layer was extracted with Et₂O, and the combined organic layers was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, and purified by column chromatography on silica gel (*n*-hexane/ethyl acetate = 70/30) to give **2c** (67.8 mg, 99%) as a pale yellow solid.

¹H NMR (CDCl₃, 300 MHz) δ 3.63 (brs, 1H), 7.62 (t, J = 8.0 Hz, 2H), 7.84 (d, J = 7.2 Hz, 2H), 8.28 (d, J = 8.4 Hz, 2H), 8.42 (s, 2H); ¹³C NMR (CHCl₃, 100.6 MHz) δ 78.6 (q, J = 29.3 Hz), 122.5 (d, J = 1.0 Hz), 124.3, 124.4 (q, J = 286 Hz), 129.9, 133.2 (d, J = 2.0 Hz), 140.1, 148.4; ¹⁹F NMR (CDCl₃, 282 MHz) δ -75.0 (s, 3F); IR (KBr) 3853, 3744, 3675, 3650, 3629, 3421, 2360, 1734, 1718, 1700, 1684, 1653, 1635, 1539, 1457, 1340, 1177, 816, 741, 668 cm⁻¹; mp = 88.0-89.0 °C (CHCl₃); MS (ESI, m/z) 341 [M-H]⁻, HRMS (ESI) calcd. for C₁₄H₈F₃N₂O₅ [M-H]⁻: 341.0385 Found: 341.0393.

1,1,1-Trifluoro-2-(naphthalen-2-yl)propan-2-ol (2d)

KOH/Celite 503 (1/1, 100 mg) was packed into the Pasteur pipette (7 $\phi \times 146$ mm). **1d** (0.2 mmol, 34.0 mg) and Me₃SiCF₃ (0.4 mmol, 59.1 µL, 2.0 equiv) in DMF (2.0 mL) was fed into the Pasteur pipette using the syringe. The product was run out using 4.0 mL of DMF and quenched with sat. NH₄Cl aq. The aqueous layer was extracted with Et₂O, and the combined organic layers was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, and purified by column chromatography on silica gel (*n*-hexane/ethyl acetate = 95/5) to give **2d** (38.0 mg, 79%) as a white solid.

This compound has been previously synthesized and characterized.⁵

¹H NMR (CDCl₃, 300 MHz) δ 1.88 (s, 3H), 2.55 (s, 1H), 7.50-7.53 (m, 2H), 7.67 (d, J = 8.4 Hz, 1H), 7.86-7.89 (m, 3H), 8.07 (s, 1H); ¹⁹F NMR (CDCl₃, 282 MHz) δ -81.1 (s, 3F); MS (EI, m/z) 240 (M⁺).

1,1,1-Trifluoro-2-(4-cyanophenyl)propan-2-ol (2e)

KOH/Celite 503 (1/1, 100 mg) was packed into the Pasteur pipette (7 $\phi \times 146$ mm). **1e** (0.2 mmol, 29.0 mg) and Me₃SiCF₃ (0.4 mmol, 59.1 µL, 2.0 equiv) in DMF (2.0 mL) was fed into the Pasteur pipette using the syringe. The product was run out using 4.0 mL of DMF and quenched with sat. NH₄Cl aq. The aqueous layer was extracted with Et₂O, and the combined organic layers was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, and purified by column chromatography on silica gel (*n*-hexane/ethyl acetate = 90/10) to give **2e** (38.3 mg, 89%) as a white solid.

¹H NMR (CDCl₃, 300 MHz) δ 1.81 (s, 3H), 2.60 (s, 1H), 7.72 (m, 4H); ¹³C NMR (CHCl₃, 100.6 MHz) δ 23.9, 74.6 (q, *J* = 29.8 Hz), 112.6, 118.3, 125.1 (q, *J* = 285 Hz), 127.1, 132.1, 143.4; ¹⁹F NMR (CDCl₃, 282 MHz) δ -81.4 (s, 3F); IR (KBr) 3853, 3744, 3675, 3629, 3420, 3360, 2241, 1734, 1700, 1684, 1653, 1635, 1610, 1559, 1540, 1507, 1467, 1419, 1157, 826, 668 cm⁻¹; mp = 119.6-120.6 °C (CHCl₃); MS (EI, *m/z*) 215 (M⁺), HRMS (EI) calcd. for C₁₀H₈F₃NO₂ (M⁺): 215.0558 Found: 215.0544.

1,1,1-Trifluoro-2-(4-nitrophenyl)propan-2-ol (2f)

KOH/Celite 503 (1/1, 100 mg) was packed into the Pasteur pipette (7 $\phi \times 146$ mm). **1f** (0.2 mmol, 33.0 mg) and Me₃SiCF₃ (0.4 mmol, 59.1 µL, 2.0 equiv) in DMF (2.0 mL) was fed into the Pasteur pipette using the syringe. The product was run out using 4.0 mL of DMF and quenched with sat. NH₄Cl aq. The aqueous layer was extracted with Et₂O, and the combined organic layers was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, and purified by column chromatography on silica gel (*n*-hexane/ethyl acetate = 90/10) to give **2f** (29.0 mg, 88%) as a white solid.

⁵ I. A. Sanhueza, K. J. Bonney, M. C. Nielsen, F. Schoenebeck, J. Org. Chem. 2013, 78, 7749.

This compound has been previously synthesized and characterized.⁶

¹H NMR (CDCl₃, 300 MHz) δ 1.85 (s, 3H), 2.72 (s, 1H), 7.80 (d, J = 9.3 Hz, 2H), 8.26 (d, J = 8.1 Hz, 2H); ¹⁹F NMR (CDCl₃, 282 MHz) δ -81.3 (s, 3F); MS (EI, *m/z*) 235 (M⁺).

Tert-butyl 4-hydroxy-4-(trifluoromethyl)-1-piperidinecarboxylate (2g)

KOH/Celite 503 (1/1, 100 mg) was packed into the Pasteur pipette (7 $\phi \times 146$ mm). **1g** (0.2 mmol, 39.9 mg) and Me₃SiCF₃ (0.4 mmol, 59.1 µL, 2.0 equiv) in DMF (2.0 mL) was fed into the Pasteur pipette using the syringe. The product was run out using 4.0 mL of DMF and quenched with sat. NH₄Cl aq. The aqueous layer was extracted with Et₂O, and the combined organic layers was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, and purified by column chromatography on silica gel (*n*-hexane/ethyl acetate = 80/20) to give **2g** (49.0 mg, 91%) as a white solid.

This compound has been previously synthesized and characterized.⁷

¹H NMR (CDCl₃, 300 MHz) δ 1.47 (s, 9H), 1.69-1.83 (m, 4H), 2.87 (s, 1H), 3.07 (m, 2H), 4.04 (m, 2H); ¹⁹F NMR (CDCl₃, 282 MHz) δ -85.4 (s, 3F); MS (EI, *m/z*) 269 (M⁺).

(E)-1,1,1-Trifluoro-2,4-diphenylbut-3-en-2-ol (2h)

KOH/Celite 503 (1/1, 100 mg) was packed into the Pasteur pipette (7 $\phi \times 146$ mm). **1h** (0.2 mmol, 41.7 mg) and Me₃SiCF₃ (0.4 mmol, 59.1 µL, 2.0 equiv) in DMF (2.0 mL) was fed into the Pasteur pipette using the syringe. The product was run out using 4.0 mL of DMF and quenched with sat. NH₄Cl aq. The aqueous layer was extracted with Et₂O, and the combined organic layers was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, and purified by column chromatography on silica gel (*n*-hexane/ethyl acetate = 90/10) to give **2h** (41.2 mg, 74%) as a colorless oil.

This compound has been previously synthesized and characterized.⁸ ¹H NMR (CDCl₃, 300 MHz) δ 2.74 (s, 1H), 6.73 (d, *J* = 16.2 Hz, 1H), 6.89 (d, *J* = 16.2 Hz, 1H),

⁶ D. van der Born, J. D. M. Herscheid, R. V. A. Orru, D. J. Vugts, Chem. Commun. 2013, 49, 4018.

⁷ D. S. Middleton, A. Stobie, WO 2003051868, **2003**.

⁸ K. Aikawa, W. Toya, Y. Nakamura, K. Mikami, Org. Lett. 2015, 17, 4996.

7.30-7.44 (m, 8H), 7.65 (d, J = 6.6 Hz, 2H); ¹⁹F NMR (CDCl₃, 282 MHz) δ -79.0 (s, 3F); MS (EI, m/z) 278 (M⁺).

2,2,2-Trifluoro-1-(naphthalen-2-yl)ethanol (2i)

KOH/Celite 503 (1/1, 100 mg) was packed into the Pasteur pipette (7 $\phi \times 146$ mm). **1i** (0.2 mmol, 31.2 mg) and Me₃SiCF₃ (0.4 mmol, 59.1 µL, 2.0 equiv) in DMF (2.0 mL) was fed into the Pasteur pipette using the syringe. The product was run out using 4.0 mL of DMF and quenched with sat. NH₄Cl aq. The aqueous layer was extracted with Et₂O, and the combined organic layers was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, and purified by column chromatography on silica gel (*n*-hexane/ethyl acetate = 90/10) to give **2i** (35.3 mg, 78%) as a white solid.

This compound has been previously synthesized and characterized.⁹

¹H NMR (CDCl₃, 300 MHz) δ 2.73 (m, 1H), 5.16-5.21 (m, 1H), 7.51-7.58 (m, 3H), 7.86-7.90 (m, 3H), 7.95 (s, 1H); ¹⁹F NMR (CDCl₃, 282 MHz) δ -78.5 (d, J = 5.9 Hz, 3F); MS (EI, m/z) 226 (M⁺).

2,2,2-Trifluoro-1-(4-methylphenyl)ethanol (2j)

KOH/Celite 503 (1/1, 100 mg) was packed into the Pasteur pipette (7 $\phi \times 146$ mm). **1j** (0.2 mmol, 30.2 mg) and Me₃SiCF₃ (0.4 mmol, 59.1 µL, 2.0 equiv) in DMF (0.5 mL) was fed into the Pasteur pipette using the syringe. The product was run out using 5.5 mL of DMF and quenched with sat. NH₄Cl aq. The aqueous layer was extracted with Et₂O, and the combined organic layers was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, and purified by column chromatography on silica gel (*n*-hexane/ethyl acetate = 90/10) to give **2j** (33.2 mg, 75%) as a colorless oil.

This compound has been previously synthesized and characterized.⁹

¹H NMR (CDCl₃, 300 MHz) δ 2.37 (s, 3H), 2.66 (m, 1H), 4.98 (m, 1H), 7.22 (d, J = 7.5 Hz, 2H), 7.36 (d, J = 7.2 Hz, 2H); ¹⁹F NMR (CDCl₃, 282 MHz) δ -78.9 (d, J = 5.9 Hz, 3F); MS (EI, m/z) 190 (M⁺).

⁹ G. K. S. Prakash, Z. Zhang, F. Wang, S. Munoz, G. A. Olah, J. Org. Chem. 2013, 78, 3300.

2,2,2-Trifluoro-1-(3-methylphenyl)ethanol (2k)

KOH/Celite 503 (1/1, 100 mg) was packed into the Pasteur pipette (7 $\phi \times 146$ mm). **1k** (0.2 mmol, 30.2 mg) and Me₃SiCF₃ (0.4 mmol, 59.1 µL, 2.0 equiv) in DMF (0.5 mL) was fed into the Pasteur pipette using the syringe. The product was run out using 5.5 mL of DMF and quenched with sat. NH₄Cl aq. The aqueous layer was extracted with Et₂O, and the combined organic layers was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, and purified by column chromatography on silica gel (*n*-hexane/ethyl acetate = 90/10) to give **2k** (33.2 mg, 75%) as a colorless oil.

This compound has been previously synthesized and characterized.⁹

¹H NMR (CDCl₃, 300 MHz) δ 2.38 (s, 3H), 2.69 (m, 1H), 4.96-4.98 (m, 1H), 7.23-7.28 (m, 4H); ¹⁹F NMR (CDCl₃, 282 MHz) δ -78.8 (d, J = 7.1 Hz, 3F); MS (EI, m/z) 190 (M⁺).

2,2,2-Trifluoro-1-(4-methoxyphenyl)ethanol (2l)

KOH/Celite 503 (1/1, 100 mg) was packed into the Pasteur pipette (7 $\phi \times 146$ mm). **11** (0.2 mmol, 27.2 mg) and Me₃SiCF₃ (0.4 mmol, 59.1 µL, 2.0 equiv) in DMF (0.5 mL) was fed into the Pasteur pipette using the syringe. The product was run out using 5.5 mL of DMF and quenched with sat. NH₄Cl aq. The aqueous layer was extracted with Et₂O, and the combined organic layers was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, and purified by column chromatography on silica gel (*n*-hexane/ethyl acetate = 90/10) to give **21** (38.8 mg, 94%) as a colorless oil.

This compound has been previously synthesized and characterized.¹⁰

¹H NMR (CDCl₃, 300 MHz) δ 2.78 (m, 1H), 3.82 (s, 3H), 4.95-4.97 (m, 1H), 6.93 (d, *J* = 8.4 Hz, 2H), 7.40 (d, *J* = 7.5 Hz, 2H); ¹⁹F NMR (CDCl₃, 282 MHz) δ -79.0 (d, *J* = 6.8 Hz, 3F); MS (EI, *m/z*) 206 (M⁺).

¹⁰ Q. Xu, H. Zhou, X. Geng, P. Chen, *Tetrahedron*, **2009**, 65, 2232.

2,2,2-Trifluoro-1-(4-nitrophenyl)ethanol (2m)

LiOAc/Celite 503 (1/1, 100 mg) was packed into the Pasteur pipette (7 $\phi \times 146$ mm). **1m** (0.2 mmol, 30.2 mg) and Me₃SiCF₃ (0.4 mmol, 59.1 µL, 2.0 equiv) in DMF (2.0 mL) was fed into the Pasteur pipette using the syringe. The product was run out using 4.0 mL of DMF and quenched with sat. NH₄Cl aq. The aqueous layer was extracted with Et₂O, and the combined organic layers was washed with brine, dried over Na₂SO₄ The trimethylsilyl ether was treated with *n*Bu₄NF (57.5 mg, 0.22 mmol, 1.1 equiv) in THF (2.0 mL) at ambient temperature for 1 h. The resulting mixture was concentrated under reduced pressure, and purified by column chromatography on silica gel (*n*-hexane/ethyl acetate = 80/20) to give **2m** (26.5 mg, 60%) as a pale yellow solid.

This compound has been previously synthesized and characterized.⁴

¹H NMR (CDCl₃, 300 MHz) δ 2.99 (brs, 1H), 5.19 (q, J = 6.2 Hz, 1H), 7.70 (d, J = 8.1 Hz, 2H), 8.28 (d, J = 7.2 Hz, 2H); ¹⁹F NMR (CDCl₃, 282 MHz) δ -78.7 (d, J = 5.9 Hz, 3F); MS (EI, *m/z*) 221 (M⁺).

2,2,2-Trifluoro-1-(4-cyanophenyl)ethanol (2n)

LiOAc/Celite 503 (1/1, 100 mg) was packed into the Pasteur pipette (7 $\phi \times 146$ mm). **1n** (0.2 mmol, 26.2 mg) and Me₃SiCF₃ (0.4 mmol, 59.1 µL, 2.0 equiv) in DMF (2.0 mL) was fed into the Pasteur pipette using the syringe. The product was run out using 4.0 mL of DMF and quenched with sat. NH₄Cl aq. The aqueous layer was extracted with Et₂O, and the combined organic layers was washed with brine, dried over Na₂SO₄ The trimethylsilyl ether was treated with *n*Bu₄NF (57.5 mg, 0.22 mmol, 1.1 equiv) in THF (2.0 mL) at ambient temperature for 1 h. The resulting mixture was concentrated under reduced pressure, and purified by column chromatography on silica gel (*n*-hexane/ethyl acetate = 80/20) to give **2n** (34.2 mg, 85%) as a white solid.

This compound has been previously synthesized and characterized.¹⁰

¹H NMR (CDCl₃, 300 MHz) δ 2.19 (m, 1H), 5.13-5.15 (m, 1H), 7.64 (d, J = 7.5 Hz, 2H), 7.72 (d, J = 9.6 Hz, 2H); ¹⁹F NMR (CDCl₃, 282 MHz) δ -78.7 (d, J = 5.1 Hz, 3F); MS (EI, *m/z*) 201 (M⁺).

1,1,1-Trifluoro-2-[3-({(2*R*)-4-[4-fluoro-2-(trifluoromethyl)-phenyl]-2-methylpiperazin-1-yl} sulfonyl)phenyl]propan-2-ol (20)

KOH/Celite 503 (1/1, 100 mg) was packed into the Pasteur pipette (7 $\phi \times 146$ mm). **10** (0.2 mmol, 88.9 mg) and Me₃SiCF₃ (0.4 mmol, 59.1 µL, 2.0 equiv) in DMF (2.0 mL) was fed into the Pasteur pipette using the syringe. The product was run out using 4.0 mL of DMF and quenched with sat. NH₄Cl aq. The aqueous layer was extracted with Et₂O, and the combined organic layers was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, and purified by column chromatography on silica gel (benzene/ethyl acetate = 95/5) to give **20** (82.3 mg, 80%) as a white solid.

This compound has been previously synthesized and characterized.¹¹

¹H NMR (CDCl₃, 300 MHz) δ 1.19 (d, J = 6.3 Hz, 3H), 1.84 (s, 3H), 2.67-2.70 (m, 2H), 2.85-2.88 (m, 2H), 3.12 (s, 1H), 3.36 (t, J = 11.0 Hz, 1H), 3.75 (d, J = 12.0 Hz, 1H), 4.23 (s, 1H), 7.21 (d, J = 5.1 Hz, 2H), 7.32 (d, J = 8.4 Hz, 1H), 7.57 (t, J = 7.8 Hz, 1H), 7.84-7.87 (m, 2H), 8.11 (s, 1H); ¹⁹F NMR (CDCl₃, 282 MHz) δ -114.7 (d, J = 4.7 Hz, 1F), -81.5 (s, 3F), -61.4 (s, 3F); MS (ESI, m/z) 515 [M+H]⁺.

2-(5-Chloro-2-nitrophenyl)-4-cyclopropyl-1,1,1-trifluorobut-3-yn-2-ol (2p)

KOH/Celite 503 (1/1, 100 mg) was packed into the Pasteur pipette (7 $\phi \times 146$ mm). **1p** (0.2 mmol, 49.9 mg) and Me₃SiCF₃ (0.4 mmol, 59.1 µL, 2.0 equiv) in DMF (2.0 mL) was fed into the Pasteur pipette using the syringe. The product was run out using 4.0 mL of DMF and quenched with sat. NH₄Cl aq. The aqueous layer was extracted with Et₂O, and the combined organic layers was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, and purified by column chromatography on silica gel (*n*-hexane/ethyl acetate = 95/5) to give **2p** (56.3 mg, 88%) as a colorless oil.

This compound has been previously synthesized and characterized.¹

¹H NMR (CDCl₃, 300 MHz) δ 0.82-0.89 (m 4H), 1.25-1.32 (m, 1H), 3.65 (s, 1H), 7.44-7.48 (m, 2H),

¹¹ Z.-K. Wan, E. Chenail, H.-Q. Li, C. Kendall, Y. Wang, S. Gingras, J. Xiang, W. W. Massefski, T.

S. Mansour, E. Saiah, J. Org. Chem. 2011, 76, 7048.

7.80 (s, 1H); ¹⁹F NMR (CDCl₃, 282 MHz) δ -78.8 (s, 3F) ; MS (ESI, *m/z*) 318 [M-H]⁻.

2-(2,5-Dichlorophenyl)-4-cyclopropyl-1,1,1-trifluorobut-3-yn-2-ol (2q)

KOH/Celite 503 (1/1, 100 mg) was packed into the Pasteur pipette (7 $\phi \times 146$ mm). **1q** (0.2 mmol, 47.8 mg) and Me₃SiCF₃ (0.4 mmol, 59.1 µL, 2.0 equiv) in DMF (2.0 mL) was fed into the Pasteur pipette using the syringe. The product was run out using 4.0 mL of DMF and quenched with sat. NH₄Cl aq. The aqueous layer was extracted with Et₂O, and the combined organic layers was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, and purified by column chromatography on silica gel (*n*-hexane/ethyl acetate = 95/5) to give **2q** (53.2 mg, 86%) as a colorless oil.

This compound has been previously synthesized and characterized.¹²

¹H NMR (CDCl₃, 300 MHz) δ 0.82-0.88 (m, 4H), 1.34-1.39 (m, 1H), 3.41 (s, 1H), 7.26-7.38 (m, 2H), 7.88 (s, 1H); ¹⁹F NMR (CDCl₃, 282 MHz) δ -79.1 (s, 3F); MS (ESI, *m/z*) 309 [M+H]⁺.

General continuous-flow procedure for the trifluoromethylation to carbonyl compounds by KOH/Celite 503.

KOH/Celite 503 (1/1) was packed into the glass column (3 $\phi \times$ 50 mm). **1p** (0.1 M in DMF) and Me₃SiCF₃ (2.0 equiv) was fed into the column using the syringe pump (3.0 mL/min). The product was quenched with sat. NH₄Cl aq. At this stage, ¹⁹F NMR analysis was performed on a small sample, in the presence of PhCF₃ as internal standard.

¹² C. A. Correia, K. Gilmore, D. T. McQuade, P. H. Seeberger, *Angew. Chem. Int. Ed.* **2015**, *54*, 4945.

α,α'-Biscinchonium-*m*-xylene diphenoxide-phenol complex (catalyst A)

Ion-exchange resin Amberlyst A-26 (OH⁻) (2.84 g) was added to a stirred solution of α, α' -biscinchonium-*m*-xylene dibromide (1.54 g, 1.81 mmol) in methanol (15 mL) at ambient temperature. The mixture was stirred for 10 h at the same temperature, filtered, and washed with methanol. Phenol (340 mg, 3.61 mmol, 2.0 equiv) was added to the filtrate, and the resulting mixture was co-evaporated three times with benzene. Crystallization of the residue from diethyl ether afforded, which was collected by filtration and dried under reduced pressure to form cinchonine-derived chiral quaternary ammonium salt **catalyst A** (770 mg, 48% yield) as a white solid.

OPh

¹H NMR (CHCl₃, 300 MHz) δ 1.10 (m, 2H), 1.86 (m, 4H), 1.97 (m, 2H), 2.49-2.56 (m, 4H), 3.16-3.19 (m, 2H), 3.57 (t, *J* = 10.4 Hz, 2H), 3.82 (m, 2H), 3.95-4.07 (m, 2H), 6.03-6.15 (m, 2H), 6.54 (t, *J* = 7.1 Hz, 4H), 6.66 (d, *J* = 7.5 Hz, 8H), 7.02 (t, *J* = 7.7 Hz, 8H), 7.81 (m, 4H), 7.87-7.91 (m, 5H), 7.98-8.06 (m, 3H), 8.15 (d, *J* = 7.8 Hz, 2H), 8.27 (d, *J* = 7.5 Hz, 2H), 8.97 (d, *J* = 4.2 Hz, 2H); ¹³C NMR (CHCl₃, 125.8 MHz) δ 22.2, 24.7, 28.5, 39.0, 56.0, 58.1, 64.0, 66.8, 69.5, 117.2, 118.0, 118.5, 121.4, 124.2, 126.2, 129.1, 130.1, 130.2, 130.3, 131.2, 131.3, 136.9, 137.6, 140.2, 147.6, 148.7, 151.1, 164.0; IR (KBr) 3857, 3741, 3363, 2360, 2063, 1925, 1647, 1577, 1469, 1392, 1261, 1161, 1119, 987, 926, 868, 818, 764, 690 cm⁻¹; mp = 110.1-111.6 °C (CHCl₃); MS (ESI, *m/z*) 346 [1/2(M-2(OPh)-2(HOPh))]⁺, HRMS (ESI) calcd. for C₂₃H₄₀NO [1/2(M-2(OPh)-2(HOPh))]⁺: 346.3110 Found: 346.3127; [α]_D²⁵ = +63.9 (c = 0.38, CHCl₃).

General procedure for the asymmetric trifluoromethylation to carbonyl compounds by ammonium phenoxide/Celite 503.

Ammonium phenoxide/Celite 503 (1/1, 2.0 equiv) was packed into the Pasteur pipette (7 $\phi \times 146$ mm). Carbonyl compound (0.1 mmol) and Me₃SiCF₃ (0.2 mmol, 29.6 μ L, 2.0 equiv) in toluene/CH₂Cl₂ (0.1 mL) was fed into the Pasteur pipette using the syringe. The product was run out

using 2.9 mL of toluene/CH₂Cl₂ and quenched with sat. NH₄Cl aq. The aqueous layer was extracted with CH₂Cl₂, and the combined organic layers was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The trimethylsilyl ether was treated with *n*Bu₄NF (28.8 mg, 0.11 mmol, 1.1 equiv) in THF (1.0 mL) at ambient temperature for 1 h. The resulting mixture was concentrated under reduced pressure, and purified by column chromatography on silica gel to give α -trifluoromethyl alcohol.

1,1,1-Trifluoro-2-(naphthalen-2-yl)propan-2-ol (2i)

Catalyst A/Celite 503 (1/1, 2.0 equiv) was packed into the Pasteur pipette (7 $\phi \times 146$ mm). **1i** (17.0 mg, 0.1 mmol) and Me₃SiCF₃ (0.2 mmol, 29.6 µL, 2.0 equiv) in toluene/CH₂Cl₂ (0.1 mL) was fed into the Pasteur pipette using the syringe. The product was run out using 2.9 mL of toluene/CH₂Cl₂ and quenched with sat. NH₄Cl aq. The aqueous layer was extracted with CH₂Cl₂, and the combined organic layers was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The trimethylsilyl ether was treated with *n*Bu₄NF (28.8 mg, 0.11 mmol, 1.1 equiv) in THF (1.0 mL) at ambient temperature for 1 h. The resulting mixture was concentrated under reduced pressure, and purified by column chromatography on silica gel to give **2i** (12.5 mg, 52% yield, 36% ee) as a white solid.

The ee of the product was determined by HPLC using an OD-3 column (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 8.9$ min, $\tau_{min} = 17.1$ min); $[\alpha]_D^{25} = +2.13$ (c = 0.34, CHCl₃), 36% ee.

(S)-2-(5-Chloro-2-nitrophenyl)-4-cyclopropyl-1,1,1-trifluorobut-3-yn-2-ol (2p)

Catalyst B/Celite 503 (1/1, 2.0 equiv) was packed into the Pasteur pipette (7 $\phi \times 146$ mm). **1p** (25.0 mg, 0.1 mmol) and Me₃SiCF₃ (0.2 mmol, 29.6 µL, 2.0 equiv) in toluene/CH₂Cl₂ (0.1 mL) was fed into the Pasteur pipette using the syringe. The product was run out using 2.9 mL of toluene/CH₂Cl₂ and quenched with sat. NH₄Cl aq. The aqueous layer was extracted with CH₂Cl₂, and the combined organic layers was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The trimethylsilyl ether was treated with *n*Bu₄NF (28.8 mg, 0.11 mmol, 1.1 equiv) in THF (1.0 mL)

at ambient temperature for 1 h. The resulting mixture was concentrated under reduced pressure, and purified by column chromatography on silica gel to give (*S*)-2p (14.7 mg, 46% yield, 36% ee) as a colorless oil.

The ee of the product was determined by HPLC using an OD-3 column (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 13.0$ min, $\tau_{min} = 10.6$ min); $[\alpha]_D^{25} = -5.18$ (c = 0.14, CHCl₃), 36% ee.

(S)-2-(2,5-Dichlorophenyl)-4-cyclopropyl-1,1,1-trifluorobut-3-yn-2-ol (2q)

Catalyst B/Celite 503 (1/1, 2.0 equiv) was packed into the Pasteur pipette (7 $\phi \times 146$ mm). **1q** (23.9 mg, 0.1 mmol) and Me₃SiCF₃ (0.2 mmol, 29.6 µL, 2.0 equiv) in toluene/CH₂Cl₂ (0.1 mL) was fed into the Pasteur pipette using the syringe. The product was run out using 2.9 mL of toluene/CH₂Cl₂ and quenched with sat. NH₄Cl aq. The aqueous layer was extracted with CH₂Cl₂, and the combined organic layers was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The trimethylsilyl ether was treated with *n*Bu₄NF (28.8 mg, 0.11 mmol, 1.1 equiv) in THF (1.0 mL) at ambient temperature for 1 h. The resulting mixture was concentrated under reduced pressure, and purified by column chromatography on silica gel to give (*S*)-**2q** (14.5 mg, 47% yield, 30% ee) as a colorless oil.

The ee of the product was determined by HPLC using an IA column (*n*-hexane/*i*-PrOH = 98/2, flow rate 0.2 mL/min, $\lambda = 230$ nm, $\tau_{maj} = 42.6$ min, $\tau_{min} = 47.6$ min); $[\alpha]_D^{25} = +5.52$ (c = 0.51, CHCl₃), 30% ee.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

No.	tR (min)	Area (%)	High (%)
1	8.792	49.858	62.927
2	17.067	50.142	37.073

No.	tR (min)	Area (%)	High (%)
1	8.867	67.848	77.565
2	17.067	32.152	22.435

2p HPLC using an OD-3 colum

(n-Hexan/iPrOH=95/5, flow rate 1.0 mL/min, λ =254 nm)

No.	tR (min)	Area (%)	High (%)
1	10.625	49.807	52.787
2	12.850	50.193	47.213

No.	tR (min)	Area (%)	High (%)
1	10.633	32.0087	34.610
2	12.975	67.913	65.390

2q HPLC using an IA colum

(n-Hexan/iPrOH=98/2, flow rate 0.2 mL/min, λ =230 nm)

No.	tR (min)	Area (%)	High (%)
1	43.242	50.719	51.460
2	47.333	49.281	48.540

No.	tR (min)	Area (%)	High (%)
1	42.583	65.164	63.569
2	47.592	34.836	36.431