Polyoxometalates-mediated facile synthesis of Pt nanoparticles

anchored on ordered mesoporous carbon for electrochemical

applications

Fig. S1 The wide survey spectrums of Pt@POMs-OMC nanohybrids.

Table S1 Comparison of the R_{ct} and response to K₃Fe(CN)₆/K₄Fe(CN)₆ with different electrodes (for five determinations)

(10) The determinations)						
Electrode	bare GCE	OMC-GCE	Pt@POMs-OMC-GCE			
$R_{ct}(\Omega)$	342.7	15.8	9.6			

Working electrode	potential (V)	Linear range	sensitivity	Limit of	Reference
		(µM)	$(\mu A m M^{-1})$	detection (µM)	
RGO/ZnO–Au/GCE ^a	0.1 (Ag/AgCl)	0.05-5	393.34	0.018	1
PA6/PANI_ZnO/FTO ^b	0.19 (Ag/AgCl)	0.5-5000	61.77	0.35	2
Ag/ZIF-8/CPE ^c	-0.05 (Ag/AgCl)	6-5000	3.87	1.57	3
Co ₃ O ₄ NWs/GCE ^d	0.5 (Ag/AgCl)	20-700	28.63	0.5	4
Nafion-TiO2-CNT/GCEe	0.4 (Ag/AgCl)	0.35-162	58	0.22	5
rGO-PxDA-Pd/GCEf	0.1 (Ag/AgCl)	1-7433	15.2	0.17	6
Co ₃ O ₄ /MWCNTs/GCE ^g	0.5 (SCE ¹)	20-1100	34.5	0.8	7
Pt-Cu@PSi/CILEh	0 (Ag/AgCl)	0.2-1680	10.35	0.05	8
PNi-TPPS ₄ -NPs/GCE ⁱ	0.55 (Ag/AgCl)	1-400	0.99	0.11	9
Au/PDTYB/MWCNTs/GCE ^j	0.08 (Ag/AgCl)	2-350	41.63	0.6	10
PB@Ag/GF ^k	0.3 (Ag/AgCl)	0.5-8.5	26.06	0.49	11
	0 (Ag/AgCl)	10-840	2.92	3.41	This work
FUUF OIVIS-OIVIC-OCE		840-1400	7.32		

Table S2 Comparison of the performance of the Pt@POMs-OMC-GCE for the electrochemical detection of

hydrazine wi	ith that of	other mo	dified e	lectrodes.
--------------	-------------	----------	----------	------------

a Reduced graphene oxide nanosheets/ZnO microspheres-Au nanoparticles modified glassy carbon electrode

b Polyamide 6/polyaniline (PA6/PANI) electrospun nanofibers decorated with ZnO nanoparticles modified fluorine doped tin oxide electrode

c Ag/zeolitic imidazolate frameworks nanocomposite modified glassy carbon electrode

d Porous Co3O4 nanowire modified glassy carbon electrode

e Nafion-coated titanium oxide nanoparticle deposition on carbon nanotube surfaces modified glassy carbon electrode

f Graphene functionalized by benzylamine molecules and subsequently palladium modified glassy carbon electrode

g Co₃O₄ nanoparticles decorated on the multi-walled carbon nanotubes modified glassy carbon electrode

h Pt-Cu nanoalloy was supported on the surface of porous silicon modified carbon ionic liquid electrode

i Poly-(5, 10, 15, 20-tetra (4-sulfophenyl) porphyrin-nickel) modified glassy carbon electrode

j Poly (4, 5-dihydro-1, 3-thiazol-2-ylsulfanyl-3-methyl-1, 2-benzenediol)–gold nanoparticles film on multi-walled carbon nanotubes modified glassy carbon electrode

k Prussian blue/silver nanoparticles modified freestanding graphite felt

l Saturated calomel electrode

Table S3 Comparison of the performance of the Pt@POMs-OMC-GCE for the electrochemical detection of H2O2

Working electrode	potential (V)	Linear range	sensitivity	Limit of	Reference
		(µM)	$(\mu A \ mM^{-1})$	detection (μM)	
Cu/PSi/CPE ^a	-0.2 (Ag/AgCl)	0.5-3780	13.09	0.27	12
NP-PtAu/GCE ^b	0.7 (RHE ¹)	50-2750	1.43	0.1	13
PpPDA@Fe ₃ O ₄ /GCE ^c	-0.4 (SCE ^m)	0.5-400	76	0.21	14
GF/Co ₃ O ₄ -NP/GCE ^d	-0.48 (Ag/AgCl)	0.2-211.5	90.97	0.06	15
TOAB/ZnPp-C ₆₀ /GCE ^e	-1.17 (Ag/AgCl)	35-3400	215.6	0.81	16
HRP/C-Dots/LDHs/GCEf	-0.35 (SCE)	0.1-23.1	37.51	0.04	17
Pt/PG/GCE ^g	0.14 (Ag/AgCl)	1-1477	27.22	0.5	18
Au NPs-N-GQDs/GCE ^h	-0.4 (Ag/AgCl)	0.25-13327	14.86	0.12	19
PPy-Pt/GCE ⁱ	-0.175 (Ag/AgCl)	500-6300	13.16	0.6	20
graphene/pectin-CuNPs/GCE ^j	-0.24 (Ag/AgCl)	1-1000	31.20	0.35	21
Pt-MnO _x @C/GCE ^k	0.4 (Ag/AgCl)	2-4000	9.81	0.7	22
Pt@POMs-OMC-GCE	-0.16 (Ag/AgCl)	5-5400	10.64	1.09	This work

with that of other modified electrodes.

a Copper on porous silicon nanocomposite modified carbon paste electrode

b Nanoporous Pt-Au alloy modified glassy carbon electrode

c Poly(p-phenylenediamine) (PpPDA)-Fe₃O₄ nanocomposite modified glassy carbon electrode

d Graphene and cobalt oxide nanoparticles composite modified glassy carbon electrode

e Zinc porphyrin-fullerene was entrapped in tetraoctylammonium bromide film modified glassy carbon electrode

f Carbon nanodots and CoFe layered double hydroxide composites modified glassy carbon electrode

g Pt nanoparticles decorated porous grapheme nanocomposite modified glassy carbon electrode

h Au nanoparticles on nitrogen-doped graphene quantum dots modified glassy carbon electrode

i Polypyrrole/platinum nanocomposite modified glassy carbon electrode

j Graphene/pectin/copper nanoparticles modified glassy carbon electrode

k carbon supported Pt-MnOx nanoparticles modified glassy carbon electrode

l Reversible hydrogen electrode

m Saturated calomel electrode

Table S4 Comparison of the performance of the Pt@POMs-OMC-GCE for the electrochemical detection of NB

Working electrode	potential (V)	Linear range	sensitivity	Limit of	Reference
		(µM)	$(\mu A \ mM^{-1})$	detection (µM)	
RGO–AgNPs/GCE ^a	-0.45 (Ag/AgCl)	0.5-900	59.36	0.26	23
Pd–GG–g-PAM–silica/GCE ^b	-0.6 (SCE ^k)	1-3900	26	0.06	24
NPC/GCE ^c	-0.62 (Ag/AgCl)	2-100	126	0.62	25
PNMPC/Nafion/GCE ^d	-0.7 (Ag/AgCl)	1-200	6.93	0.05	26
MMPCMs/GCE ^e	-0.64 (SCE)	0.2-40	2360	0.008	27
BiF/CPE ^f	-0.65 (SCE)	1-100	289	0.83	28
OMC/DDAB/GCEg	-0.5 (Ag/AgCl)	20-2900	-	10	29
EAG/SPCE ^h	-0.624 (Ag/AgCl)	0.3-374.5	102.6	0.06	30
SiO ₂ /Au NPs/GCE ⁱ	-0.74 (Ag/AgCl)	0.1-25	102	0.1	31
HMDE ^j	-0.8 (Ag/AgCl)	14.7-1000	-	5	32
Pt@POMs-OMC-GCE	-0.59 (Ag/AgCl)	3.98-672.55	102.62	3.82	This work

with that of other modified electrodes.

a Silver nanoparticles decorated reduced graphene oxide modified glassy carbon electrode

b Palladium nanoparticles decorated guar gum grafted polyacrylamide polymer-silica nanocomposite modified glassy carbon electrode

c Nitrogen doped porous carbon modified glassy carbon electrode

d Pt nanoparticles ensemble on macroporous carbon hybrid nanocomposites/Nafion modified glassy carbon electrode

e Macro-/meso-porous carbon materials were modified on the surface of a glassy carbon electrode

f A bismuth-film modified carbon paste electrode

g Ordered mesoporous carbon/didodecyldimethylammonium bromide composites film coated glassy carbon electrode

h Electrochemically activated graphite modified screen printed carbon electrode

i Silica-stabilized gold nanoparticles modified glassy carbon electrode

j Hanging mercury drop electrode

k Saturated calomel electrode

References

- R. Madhu, B. Dinesh, S.-M. Chen, R. Saraswathi and V. Mani, *RSC Adv.*, 2015, 5, 54379–54386.
- R. S. Andre, A. Pavinatto, L. A. Mercante, E. C. Paris, L. H. C. Mattoso and D. S. Correa, *RSC Adv.*, 2015, 5, 73875–73881.
- 3. A. Samadi-Maybodi, S. Ghasemi and H. Ghaffari-Rad, *Sens. Actuators, B*, 2015, **220**, 627–633.
- J. Zhang, W. Gao, M. Dou, F. Wang, J. Liu, Z. Li and J. Ji, *Analyst*, 2015, 140, 1686–1692.
- 5. S. P. Kim and H. C. Choi, Sens. Actuators, B, 2015, 207, Part A, 424–429.
- 6. A. Ejaz, M. S. Ahmed and S. Jeon, Sens. Actuators, B, 2015, 221, 1256–1263.
- J. Zhang, H. Liu, M. Dou, F. Wang, J. Liu, Z. Li and J. Ji, *Electroanalysis*, 2015, 27, 1188–1194.
- 8. A. A. Ensafi, M. M. Abarghoui and B. Rezaei, *Electrochim. Acta*, 2016, **190**, 199–207.
- S. H. Kazemi, B. Hosseinzadeh and S. Zakavi, *Sens. Actuators, B*, 2015, 210, 343–348.
- A. R. Fakhari, H. Ahmar, H. Hosseini and S. Kazemi Movahed, Sens. Actuators, B, 2015, 213, 82–91.
- J. Zhao, J. Liu, S. Tricard, L. Wang, Y. Liang, L. Cao, J. Fang and W. Shen, *Electrochim. Acta*, 2015, 171, 121–127.
- A. A. Ensafi, M. M. Abarghoui and B. Rezaei, Sens. Actuators, B, 2014, 196, 398–405.
- 13. J. Wang, H. Gao, F. Sun and C. Xu, Sens. Actuators, B, 2014, 191, 612–618.
- M. Baghayeri, E. Nazarzadeh Zare and M. Mansour Lakouraj, *Biosens. Bioelectron.*, 2014, 55, 259–265.
- 15. C. Karuppiah, S. Palanisamy, S.-M. Chen, V. Veeramani and P. Periakaruppan, *Sens. Actuators, B*, 2014, **196**, 450–456.
- H. Wu, S. Fan, X. Jin, H. Zhang, H. Chen, Z. Dai and X. Zou, *Anal. Chem.*, 2014, 86, 6285–6290.

- 17. Y. Wang, Z. Wang, Y. Rui and M. Li, *Biosens. Bioelectron.*, 2015, 64, 57–62.
- 18. J. Liu, X. Bo, Z. Zhao and L. Guo, *Biosens. Bioelectron.*, 2015, 74, 71–77.
- 19. J. Ju and W. Chen, Anal. Chem., 2015, 87, 1903–1910.
- 20. L. Xing, Q. Rong and Z. Ma, Sens. Actuators, B, 2015, 221, 242–247.
- V. Mani, R. Devasenathipathy, S.-M. Chen, S.-F. Wang, P. Devi and Y. Tai, *Electrochim. Acta*, 2015, 176, 804–810.
- 22. H. Kivrak, O. Alal and D. Atbas, *Electrochim. Acta*, 2015, **176**, 497–503.
- C. Karuppiah, K. Muthupandi, S.-M. Chen, M. A. Ali, S. Palanisamy, A. Rajan, P. Prakash, F. M. A. Al-Hemaid and B.-S. Lou, *RSC Adv.*, 2015, 5, 31139–31146.
- P. K. Rastogi, V. Ganesan and S. Krishnamoorthi, *Electrochim. Acta*, 2014, 147, 442–450.
- 25. L. Yan, X. Bo, Y. Zhang and L. Guo, *Electrochim. Acta*, 2014, **137**, 693–699.
- Y. Zhang, L. Zeng, X. Bo, H. Wang and L. Guo, *Anal. Chim. Acta*, 2012, 752, 45–52.
- J. Ma, Y. Zhang, X. Zhang, G. Zhu, B. Liu and J. Chen, *Talanta*, 2012, 88, 696–700.
- L. Luo, X. Wang, Y. Ding, Q. Li, J. Jia and D. Deng, *Anal. Methods*, 2010, 2, 1095–1100.
- 29. B. Qi, F. Lin, J. Bai, L. Liu and L. Guo, *Mater. Lett.*, 2008, **62**, 3670–3672.
- B. Thirumalraj, S. Palanisamy and S. Chen, *Int. J. Electrochem. Sci.*, 2015, 10, 4173–4182.
- S. Singh, P. Devi, D. Singh, D. Jain and M. Singla, *Gold Bull.*, 2012. 45 (2), 75–81.
- S. Liang, H. Zhang and D. Lu, *Environ. Monit. Assess.*, 2007, **129** (1-3), 331– 337.