Electronic Supplementary Information (ESI)

Synthesis of 1-Azulenyl Ketones by Brønsted Acid Mediated Hydration of 1-Azulenylalkynes

Taku Shoji,^a* Miwa Tanaka,^a Takanori Araki,^a Sho Takagaki,^a Ryuta Sekiguchi,^b Shunji Ito^b

^a Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan.

^b Graduate School of Science and Technology, Hirosaki University,

Hirosaki 036-8561, Japan.

<u>Contents</u>

- 1. Experimental section of compounds **2**, **3a–3I**, **4** and **5**. S2–S16
- 2. Copies of ¹H NMR and ¹³C NMR of compounds **2**, **3a–3I**, **4** and **5**.

S17-S31

3. Copies of HRMS of compounds **2**, **3a–3I**, **4** and **5**. S32–S39

<u>General</u>

Melting points were determined with a Yanagimoto MPS3 micromelting apparatus, and the solvent in the parenthesis shows the solvent used for recrystallization of compound. The HRMS data were obtained with a JEOL JMS-700 or a Bruker Daltonics autoflex III TOF/TOF instrument. The IR and UV/Vis spectra were recorded with a JASCO FTIR-4100 and a Shimadzu UV-2550 spectrophotometers. The ¹H and ¹³CNMR spectra were recorded with a JEOL ECA500 spectrometer at 500 and 125 MHz, respectively.

A solution of **1a** (168 mg, 0.51 mmol) in 100% H₃PO₄ (20 mL) was stirred at 110 °C for 30 min. After the reaction mixture was cooled, the reaction mixture was poured into water and extracted with toluene. The crude product was purified by column chromatography on silica gel with toluene/AcOEt (50 : 1) as an eluent to afford **2** (27 mg, 18%) as purple crystals. M.p. 58–59 °C; IR (AT–IR): $v_{max} = 2960$ (w), 2902 (w), 1637 (m), 1575 (w), 1516 (w), 1496 (m), 1464 (w), 1455 (w), 1408 (s), 1396 (s), 1362 (w), 1337 (w), 1325 (w), 1287 (w), 1263 (w), 1211 (w), 1169 (w), 1131 (w), 1092 (m), 1071 (w), 1040 (w), 962 (w), 932 (w), 914 (w), 887 (m), 873 (m), 838 (w), 790 (m), 740 (w), 726 (w), 712 (s), 696 (w), 647 (w), 633 (w), 603 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta_{H} = 9.81$ (d, 1H, *J* = 10.0 Hz, H₈), 8.43 (s, 1H, H₄), 8.35 (d, 1H, *J* = 4.5 Hz, H₂), 7.77 (d, 1H, *J* = 10.0 Hz, H₆), 7.56 (t, 1H, *J* = 10.0 Hz, H₇), 7.37 (d, 2H, *J* = 7.5 Hz, *o*-Ph), 7.31 (t, 2H, *J* = 7.5 Hz, *m*-Ph), 7.22 (t, 1H, *J* = 7.5 Hz, *p*-Ph), 7.18 (d, 1H, *J* = 4.5 Hz, H₃), 4.36 (s, 2H, CH₂), 3.17 (sept, 1H, *J* = 7.0 Hz, *i*Pr), 1.39 (d, 6H, *J* = 7.0 Hz, *i*Pr) pm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{C} = 194.68$, 148.72, 145.39, 140.86, 140.36, 138.97, 138.40, 138.03, 136.40, 129.50, 128.57, 126.52, 123.54, 117.37, 48.01, 38.69, 24.55 ppm; HRMS (MALDI–TOF): Calcd for C₂₁H₂₀O + H⁺ [M + H]⁺ 289.1587; found: 289.1582.

Water (0.5 mL) was added to a solution of **1a** (164 mg, 0.50 mmol) and CF_3CO_2H (0.5 mL) in THF (1 mL). The resulting mixture was stirred at 50 °C for 3 h. The reaction mixture was poured into aq. K_2CO_3 . The generated crystal was corrected by filtration. The crystal was dissolved in CH_2Cl_2 and the solution was passed through the short silica gel column to give **3a** (169 mg, 98%) as red crystals.

M.p. 153–155 °C; IR (AT–IR): $v_{max} = 2958$ (w), 1686 (m), 1651 (s), 1558 (w), 1523 (w), 1508 (m), 1443 (m), 1418 (s), 1391 (s), 1381 (m), 1282 (w), 1206 (s), 1175 (m), 1157 (m), 1125 (w), 1102 (w), 1081 (m), 1011 (m), 972 (w), 944 (m), 905 (m), 878 (m), 841 (w), 818 (m), 780 (m), 741 (m), 714 (s), 695 (m), 668 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta_{H} = 9.93$ (d, 1H, J = 10.0 Hz), 9.91 (s, 1H, H₄), 8.88 (s, 1H, H₂), 7.95 (d, 1H, J = 10.0 Hz, H₆), 7.76 (t, 1H, J = 10.0 Hz, H₇), 7.31–7.37 (m, 4H, *o*,*m*-Ph), 7.24 (t, 1H, J = 7.5 Hz, *p*-Ph), 4.37 (s, 2H, CH₂), 3.99 (s, 3H, CO₂Me), 3.28 (sept, 1H, J = 7.0 Hz, *i*Pr), 1.44 (d, 6H, J = 7.0 Hz, *i*Pr) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{C} = 194.99$, 165.56, 153.68, 144.84, 144.27, 143.82, 140.87, 139.69, 139.08, 135.75, 132.31, 129.58, 128.64, 126.73, 122.38, 115.05, 51.41, 47.66, 39.35, 24.69 ppm; HRMS (MALDI–TOF): Calcd for C₂₃H₂₂O₃ + H⁺ [M + H]⁺ 347.1642; found: 347.1634.

Water (0.5 mL) was added to a solution of **1b** (186 mg, 0.50 mmol) and CF_3CO_2H (0.5 mL) in THF (3 mL). The resulting mixture was stirred at 50 °C for 5 h. The reaction mixture was poured into aq. K_2CO_3 . The precipitated crystal was corrected by filtration. The crystal was dissolved in CH_2Cl_2 and the solution was passed through the short silica gel column to give **3b** (161 mg, 83%) as red crystals.

M.p. 133–135 °C; IR (AT–IR): v_{max} = 2892 (w), 1686 (m), 1661 (s), 1617 (w), 1570 (w), 1558 (w), 1523 (m), 1509 (m), 1473 (w), 1439 (s), 1417 (s), 1391 (s), 1340 (w), 1203 (s), 1178 (m), 1154 (m), 1119 (w), 1099 (w), 1077 (m), 1061 (m), 1013 (m), 980 (w), 947 (w), 906 (m), 880 (w), 822 (m), 803 (m), 775 (m), 738 (w), 713 (w), 689 (w), 658 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ_{H} = 9.93 (d, 1H, *J* = 10.0 Hz), 9.89 (d, 1H, *J* = 1.5 Hz, H₄), 8.88 (s, 1H, H₂), 7.93 (d, 1H, *J* = 10.0 Hz, H₆), 7.74 (t, 1H, *J* = 10.0 Hz, H₇), 7.23 (d, 2H, *J* = 8.5 Hz, *o*-Ph), 6.71 (d, 2H, *J* = 8.5 Hz, *m*-Ph), 4.26 (s, 2H, CH₂), 3.98 (s, 3H, CO₂Me), 3.28 (sept, 1H, *J* = 7.0 Hz, *i*Pr), 2.90 (s, 6H, NMe₂), 1.43 (d, 6H, *J* = 7.0 Hz, *i*Pr) ppm; ¹³C NMR (125 MHz, CDCl₃): δ_{C} = 195.88, 165.62, 153.41, 149.59, 144.73, 144.28, 143.89, 140.68, 139.66, 138.91, 132.11, 130.10, 123.64, 122.52, 114.92, 113.12, 51.36, 46.83, 40.83, 39.32, 24.68 ppm; HRMS (MALDI–TOF): Calcd for C₂₅H₂₇NO₃⁺ [M]⁺ 389.1985; found: 389.1975.

Water (0.5 mL) was added to a solution of **1c** (239 mg, 0.50 mmol) and CF₃CO₂H (0.5 mL) in THF (2 mL). The resulting mixture was stirred at 50 °C for 3 h. The reaction mixture was poured into aq. K_2CO_3 . The precipitated crystal was corrected by filtration. The crystal was dissolved in CH₂Cl₂ and the solution was passed through the short silica gel column to give **3c** (196 mg, 79%) as red crystals.

M.p. 182–184 °C; IR (AT–IR): $v_{max} = 2961$ (w), 1679 (s), 1657 (m), 1598 (w), 1509 (w), 1454 (m), 1418 (m), 1403 (m), 1380 (m), 1317 (w), 1292 (w), 1222 (s), 1202 (s), 1168 (m), 1131 (m), 1098 (m), 1079 (m), 1055 (m), 992 (w), 950 (w), 908 (w), 876 (m), 857 (w), 820 (w), 809 (w), 775 (m), 742 (w), 700 (w), 689 (w), 677 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta_{H} = 9.91-9.89$ (m, 2H, H_{4,8}), 9.73 (d, 1H, J = 1.5 Hz, H₄), 8.99 (s, 1H, H₂), 8.48 (d, 1H, J = 10.0 Hz, H₈), 8.31 (s, 1H, H₂), 7.94 (d, 1H, J = 10.0 Hz, H₆), 7.75–7.71 (m, 2H, H_{7,6}), 7.42 (t, 1H, J = 10.0 Hz, H₇), 4.76 (s, 2H, CH₂), 3.99 (s, 3H, CO₂Me), 3.91 (s, 3H, CO₂Me), 3.29 (sept, 1H, J = 7.0 Hz, *i*Pr), 3.21 (sept, 1H, J = 7.0 Hz, *i*Pr), 1.43 (d, 6H, J = 7.0 Hz, *i*Pr), 1.40 (d, 6H, J = 7.0 Hz, *i*Pr) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{C} = 194.70$, 165.93, 165.58, 153.69, 148.86, 144.83, 144.33, 143.75, 141.82, 141.58, 141.24, 140.87, 139.72, 139.06, 138.25, 137.60, 134.14, 132.28, 126.27, 122.22, 121.83, 115.10, 114.15, 51.39, 50.97, 39.82, 39.32, 39.18, 24.73, 24.66 ppm; HRMS (MALDI–TOF): Calcd for C₃₂H₃₂O₅⁺ [M]⁺ 496.2244; found: 496.2242.

Water (0.5 mL) was added to a solution of **1d** (261 mg, 0.50 mmol) and CF_3CO_2H (0.5 mL) in THF (3 mL). The resulting mixture was stirred at 50 °C for 5 h. The reaction mixture was poured into aq. K_2CO_3 . The precipitated crystal was corrected by filtration. The crystal was dissolved in CH_2Cl_2 and the solution was passed through the short silica gel column to give **3d** (242 mg, 89%) as red crystals.

M.p. 207–208 °C; IR (AT–IR): $v_{max} = 2979$ (w), 1685 (m), 1650 (w), 1579 (w), 1509 (w), 1434 (s), 1419 (m), 1389 (m), 1352 (w), 1293 (w), 1200 (s), 1179 (m), 1094 (w), 1082 (w), 1042 (m), 1013 (w), 990 (w), 939 (w), 902 (m), 881 (w), 849 (w), 811 (w), 795 (w), 779 (w), 765 (w), 726 (w), 712 (w), 696 (w), 682 (w), 671 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta_{H} = 9.94$ (d, 1H, J = 1.5 Hz, H₄), 9.89 (d, 1H, J = 10.0 Hz, H₈), 9.73 (d, 2H, J = 10.9 Hz, H_{4',8'}), 8.91 (s, 1H, H_{2'}), 8.79 (s, 1H, H₂), 7.98 (d, 1H, J = 10.0 Hz, H₆), 7.82–7.77 (m, 3H, H_{7,5',7'}), 4.71 (s, 2H, CH₂), 4.42 (q, 4H, J = 7.1 Hz, CO₂Et), 4.01 (s, 3H, CO₂Me), 3.29 (q, 1H, J = 7.0 Hz, *i*Pr), 1.45–1.43 (m, 12H, *i*Pr, CO₂Et) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{C} = 192.84$, 165.38, 165.11, 154.32, 150.09, 145.13, 144.37, 143.49, 143.15, 143.08, 141.28, 139.72, 139.41, 138.36, 132.76, 121.82, 116.41, 115.41, 60.10, 52.67, 51.51, 39.39, 24.67, 14.67 ppm; HRMS (MALDI–TOF): Calcd for C₃₃H₃₂O₇ + H⁺ [M + H]⁺ 541.2221; found: 541.2211.

Water (0.5 mL) was added to a solution of **1e** (220 mg, 0.50 mmol) and CF₃CO₂H (0.5 mL) in THF (1 mL). The resulting mixture was stirred at 50 °C for 4 h. The reaction mixture was poured into aq. K₂CO₃ and extracted with CH₂Cl₂. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with CH₂Cl₂ to give **3e** (210 mg, 92%) as a brown oil. IR (AT-IR): $v_{max} = 2963$ (w), 2873 (w), 1739 (s), 1694 (m), 1648 (m), 1604 (m), 1542 (w), 1508 (m), 1441 (m), 1420 (m), 1393 (m), 1337 (w), 1310 (w), 1279 (w), 1248 (w), 1212 (s), 1178 (m), 1098 (w), 1081 (w), 1058 (w), 1014 (w), 944 (w), 904 (m), 881 (w), 844 (w), 779 (m), 734 (m), 703 (w), 671 (w), 649 (m), 603 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta_{\rm H}$ = 9.92 (d, 1H, J = 1.7 Hz, H₄), 9.86 (d, 1H, J = 10.0 Hz, H₈), 9.08 (s, 1H, H₂), 7.93 (d, 1H, J = 10.0Hz, H₆), 7.74 (t, 1H, J = 10.0 Hz, H₇), 7.32 (s, 1H, H₄), 6.88 (dd, 1H, J = 11.5, 8.9 Hz, H₇), 6.80 (d, 1H, J = 8.9 Hz, $H_{8'}$), 6.69 (d, 1H, J = 11.5 Hz, $H_{6'}$), 4.23 (s, 2H, CH₂), 3.98 (s, 3H, CO₂Me), 3.27 (sept, 1H, J = 7.0 Hz, *i*Pr), 2.80 (sept, 1H, J = 7.0 Hz, *i*Pr), 1.42 (d, 6H, J = 7.0 Hz, *i*Pr), 1.23 (d, 6H, J = 7.0 Hz, *i*Pr) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{\rm C} = 192.46$, 169.77, 165.58, 157.46, 155.86, 153.77, 149.17, 144.99, 144.30, 144.21, 140.74, 139.26, 139.04, 132.23, 131.66, 131.56, 123.63, 121.89, 115.34, 112.35, 104.29, 51.43, 39.30, 39.05, 35.74, 24.64, 23.20 ppm; HRMS (MALDI-TOF): Calcd for $C_{29}H_{28}O_5^+$ [M]⁺ 456.1931; found: 456.1930.

Water (0.5 mL) was added to a solution of **1f** (126 mg, 0.50 mmol) and CF_3CO_2H (0.5 mL) in THF (1 mL). The resulting mixture was stirred at 50 °C for 3 h. The reaction mixture was poured into aq. K_2CO_3 . The precipitated crystals were corrected by filtration. The crystal was dissolved in CH_2Cl_2 and the solution was passed through the short silica gel column to give **3f** (109 mg, 81%) as red crystals.

M.p. 98–99 °C; IR (AT–IR): $v_{max} = 2967$ (w), 1685 (m), 1644 (s), 1576 (w), 1507 (m), 1440 (m), 1420 (s), 1394 (s), 1374 (w), 1336 (w), 1305 (w), 1284 (w), 1207 (s), 1178 (m), 1146 (w), 1122 (w), 1085 (w), 1056 (w), 1033 (w), 991 (w), 975 (w), 942 (w), 905 (m), 881 (w), 823 (w), 779 (m), 739 (w), 656 (w), 630 (w), 610 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta_{H} = 9.92-9.90$ (m, 2H, H_{4,8}), 8.75 (s, 1H, H₂), 7.95 (d, 1H, *J* = 10.0 Hz, H₆), 7.77 (t, 1H, *J* = 10.0 Hz, H₇), 3.97 (s, 3H, CO₂Me), 3.29 (sept, 1H, *J* = 7.0 Hz, *i*Pr), 2.70 (s, 3H, COMe), 1.44 (d, 6H, *J* = 7.0 Hz, *i*Pr) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{C} = 195.47$, 165.56, 153.40, 144.62, 144.18, 143.54, 140.72, 139.51, 139.03, 132.13, 123.07, 114.77, 51.34, 39.33, 29.01, 24.68 ppm; HRMS (MALDI–TOF): Calcd for C₁₇H₁₈O₃ + H⁺ [M + H]⁺ 271.1329; found: 271.1317.

Water (0.5 mL) was added to a solution of **1g** (214 mg, 0.50 mmol) and CF_3CO_2H (0.5 mL) in THF (1 mL). The resulting mixture was stirred at 50 °C for 3 h. The reaction mixture was poured into aq. K_2CO_3 . The precipitated crystals were corrected by filtration. The crystal was dissolved in CH_2Cl_2 and the solution was passed through the short silica gel column to give **3g** (202 mg, 91%) as red crystals.

M.p. 198–200 °C; IR (AT–IR): $v_{max} = 2963$ (w), 2218 (w), 1687 (m), 1650 (m), 1506 (m), 1485 (w), 1440 (m), 1421 (m), 1389 (m), 1308 (w), 1212 (s), 1178 (m), 1155 (m), 1138 (w), 1097 (m), 1081 (w), 1058 (m), 1013 (w), 980 (w), 943 (w), 903 (m), 881 (w), 835 (w), 826 (w), 801 (w), 782 (m), 771 (m), 757 (m), 692 (w), 674 (w), 666 (w), 658 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta_{H} = 9.93$ (m, 2H, H_{4,8}), 8.86 (s, 1H, H₂), 7.97 (d, 1H, J = 10.0 Hz, H₆), 7.78 (t, 1H, J = 10.0 Hz, H₇), 7.52–7.49 (m, 4H, Ph), 7.35–7.31 (m, 5H, Ph), 4.38 (s, 2H, CH₂), 3.99 (s, 3H, CO₂Me), 3.29 (sept, 1H, J = 7.0 Hz, *i*Pr), 1.44 (d, 6H, J = 7.0 Hz, *i*Pr) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{C} = 194.41$, 165.51, 153.82, 144.89, 144.29, 143.75, 140.96, 139.68, 139.15, 136.08, 132.40, 131.87, 131.66, 129.62, 128.38, 128.22, 123.44, 122.24, 121.71, 115.13, 89.43, 89.35, 51.43, 47.56, 39.36, 24.69 ppm; HRMS (MALDI–TOF): Calcd for C₃₁H₂₆O₃ + H⁺ [M + H]⁺ 447.1955; found: 447.1964.

Water (0.5 mL) was added to a solution of **1h** (217 mg, 0.50 mmol) and CF_3CO_2H (0.5 mL) in THF (1 mL). The resulting mixture was stirred at 50 °C for 3 h. The reaction mixture was poured into aq. K_2CO_3 . The precipitated crystals were corrected by filtration. The crystal was dissolved in CH_2Cl_2 and the solution was passed through the short silica gel column to give **3h** (208 mg, 92%) as red crystals.

M.p. 223–224 °C; IR (AT–IR): $v_{max} = 2955$ (w), 2203 (w), 1686 (m), 1651 (m), 1597 (w), 1573 (w), 1508 (w), 1442 (m), 1420 (m), 1393 (m), 1308 (w), 1275 (w), 1211 (s), 1176 (m), 1160 (m), 1139 (w), 1096 (w), 1057 (m), 1037 (w), 1009 (w), 972 (w), 940 (w), 903 (m), 883 (w), 857 (w), 818 (m), 778 (m), 756 (m), 734 (w), 691 (m), 667 (w), 656 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta_{H} = 9.95$ (m, 2H, H_{4,8}), 8.85 (s, 1H, H₂), 7.99 (d, 1H, J = 10.0 Hz, H₆), 7.81 (t, 1H, J = 10.0 Hz, H₇), 7.48 (dd, 2H, J = 7.5, 2.0 Hz, *m*-Ph), 7.35–7.31 (m, 3H, *o*,*p*-Ph), 7.15 (d, 1H, J = 3.5 Hz, H₃ or H₄ of Th), 6.89 (d, 1H, J = 3.5 Hz, H₃ or H₄ of Th), 6.89 (d, 1H, J = 3.5 Hz, H₃ or H₄ of Th), 4.55 (s, 2H, CH₂), 4.00 (s, 3H, CO₂Me), 3.30 (sept, 1H, J = 7.0 Hz, *i*Pr), 1.45 (d, 6H, J = 7.0 Hz, *i*Pr) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{C} = 192.34$, 165.44, 154.06, 145.04, 144.40, 143.55, 141.11, 139.73, 139.24, 139.07, 132.57, 131.82, 131.42, 128.38, 128.31, 126.63, 123.15, 122.81, 121.49, 115.24, 92.93, 83.00, 51.44, 41.84, 39.38, 24.68 ppm; HRMS (MALDI–TOF): Calcd for C₂₉H₂₄O₃S + H⁺ [M + H]⁺ 453.1519; found: 453.1537.

Water (1 mL) was added to a solution of **1h** (200 mg, 0.30 mmol) and CF_3CO_2H (1 mL) in THF (2 mL). The resulting mixture was stirred at 50 °C for 5 h. The reaction mixture was poured into aq. K_2CO_3 and extracted with CH_2CI_2 . The organic layer was washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with hexane/AcOEt (3 : 1) to give **3g** (157 mg, 72%) as a brown oil.

IR (AT–IR): $v_{max} = 3368$ (w), 2971 (w), 1693 (m), 1654 (w), 1637 (w), 1607 (w), 1508 (s), 1442 (m), 1419 (m), 1393 (m), 1355 (w), 1313 (w), 1213 (s), 1177 (m), 1157 (w), 1097 (w), 1080 (w), 1057 (w), 1013 (w), 942 (w), 908 (m), 880 (w), 810 (w), 779 (m), 731 (s), 689 (w), 668 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta_{H} = 9.93$ (d, 2H, J = 10.0 Hz, H₈), 9.90 (d, 2H, J = 1.0 Hz, H₄), 8.87 (s, 2H, H₂), 7.93 (d, 2H, J = 10.0 Hz, H₆), 7.74 (t, 2H, J = 10.0 Hz, H₇), 7.22 (d, 4H, J = 8.5 Hz, *m*-Ph), 7.01 (d, 4H, J = 8.5 Hz, *p*-Ph), 5.70 (br s, 1H, NH), 4.29 (s, 4H, CH₂), 3.98 (s, 6H, CO₂Me), 3.28 (sept, 2H, J = 7.0 Hz, *i*Pr), 1.43 (d, 12H, J = 7.0 Hz, *i*Pr) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{C} = 195.37$, 165.53, 153.53, 144.75, 144.23, 143.78, 141.90, 140.76, 139.63, 138.95, 132.21, 130.37, 127.92, 122.35, 117.99, 114.95, 51.36, 46.92, 39.28, 24.64 ppm; HRMS (MALDI–TOF): Calcd for C₄₆H₄₃NO₆ + Ag⁺ [M + Ag]⁺ 812.2136; found: 812.2137.

Water (0.5 mL) was added to a solution of **1j** (173 mg, 0.50 mmol) and CF₃CO₂H (0.5 mL) in THF (1 mL). The resulting mixture was stirred at 50 °C for 3 h. The reaction mixture was poured into water. The precipitated crystals were corrected by filtration. The crystal was dissolved in CH₂Cl₂ and the solution was passed through the short silica gel column to give **3j** (123 mg, 71%) as purple crystals.

M.p. 102–104 °C; IR (AT–IR): $v_{max} = 2960$ (w), 1643 (m), 1600 (w), 1570 (w), 1525 (w), 1493 (w), 1426 (s), 1385 (m), 1365 (m), 1310 (w), 1265 (w), 1210 (m), 1196 (m), 1170 (w), 1115 (w), 1076 (w), 1031 (w), 949 (w), 903 (m), 883 (w), 843 (w), 803 (m), 774 (m), 764 (w), 740 (m), 719 (m), 706 (s), 696 (m), 686 (w), 661 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta_{H} = 10.11$ (s, 1H, H₈), 8.57 (d, 1H, J = 10.0 Hz, H₄), 8.47 (s, 1H, H₂), 7.78 (d, 1H, J = 10.0 Hz, H₆), 7.59 (d, 2H, J = 7.5 Hz, *o*-Ph or *o*-Ph'), 7.53 (t, 2H, J = 7.5 Hz, *m*-Ph or *m*-Ph'), 7.45–7.40 (m, 4H, H₅, *o*-Ph or *o*-Ph'), 7.36 (t, 2H, J = 7.5 Hz, *m*-Ph or *m*-Ph'), 7.27 (t, 1H, J = 7.5 Hz, *p*-Ph or *p*-Ph'), 4.44 (s, 2H, CH₂), 3.24 (t, 1H, J = 7.0 Hz, *i*Pr), 1.42 (d, 6H, J = 7.0 Hz, *i*Pr) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{C} = 194.67$, 151.36, 141.84, 140.78, 140.42, 140.37, 138.99, 136.57, 136.19, 135.52, 130.05, 129.67, 129.65, 128.83, 128.62, 127.84, 126.92, 126.61, 122.30, 48.03, 39.22, 24.71 ppm; HRMS (MALDI–TOF): Calcd for C₂₇H₂₄O + H⁺ [M + H]⁺ 365.1900; found: 365.1911.

Water (0.5 mL) was added to a solution of **1k** (195 mg, 0.50 mmol) and CF_3CO_2H (0.5 mL) in THF (1 mL). The resulting mixture was stirred at 50 °C for 3 h. The reaction mixture was poured into water. The precipitated crystal was corrected by filtration. The crystal was dissolved in CH_2Cl_2 and the solution was passed through the short silica gel column to give **3k** (167 mg, 82%) as brown crystals.

M.p. 137–139 °C; IR (AT–IR): $v_{max} = 2961$ (w), 2927 (w), 1649 (m), 1617 (m), 1573 (w), 1524 (s), 1489 (w), 1465 (w), 1424 (s), 1389 (w), 1381 (m), 1364 (m), 1348 (m), 1309 (w), 1265 (w), 1228 (w), 1196 (m), 1169 (w), 1118 (w), 1071 (w), 1029 (m), 998 (w), 950 (w), 923 (w), 903 (m), 879 (w), 844 (w), 800 (s), 772 (s), 762 (w), 738 (w), 707 (s), 697 (w), 681 (w), 664 (w), 641 (w), 632 (w), 618 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta_H = 10.09$ (s, 1H, H₈), 8.54 (d, 1H, J = 10.0 Hz, H₄), 8.46 (s, 1H, H₂), 7.75 (d, 1H, J = 10.0 Hz, H₆), 7.58 (d, 2H, J = 7.6 Hz, *o*-Ph), 7.51 (t, 2H, J = 7.6 Hz, *m*-Ph), 7.42–7.38 (m, 2H, H₅, *p*-Ph), 7.25 (d, 2H, J = 8.3 Hz, *o*-Ph'), 6.74 (d, 2H, J = 8.3 Hz, *m*-Ph'), 4.32 (s, 2H, CH₂), 3.21 (t, 1H, J = 7.0 Hz, *i*Pr), 2.91 (s, 6H, NMe₂), 1.40 (d, 6H, J = 7.0 Hz, *i*Pr) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_C = 195.67$, 151.15, 149.60, 141.84, 140.63, 140.51, 140.46, 138.88, 136.73, 135.41, 130.22, 129.95, 129.73, 128.84, 127.64, 126.88, 124.19, 122.47, 113.23, 47.19, 40.89, 39.23, 24.71 ppm; HRMS (MALDI–TOF): Calcd for C₂₉H₂₉NO⁺ [M]⁺ 407.2244; found: 407.2243.

Water (0.5 mL) was added to a solution of **1I** (100 mg, 0.26 mmol) and CF_3CO_2H (0.5 mL) in THF (1.5 mL). The resulting mixture was stirred at 50 °C for 4 h. The reaction mixture was poured into aq. K_2CO_3 . The precipitated crystals were corrected by filtration. The crystal was dissolved in CH_2Cl_2 and the solution was passed through the short silica gel column to give **3I** (101 mg, 97%) as brown crystals.

M.p. 141–143 °C; IR (AT–IR): $v_{max} = 2966$ (w), 1638 (m), 1599 (w), 1575 (w), 1509 (s), 1490 (w), 1467 (w), 1430 (m), 1419 (m), 1382 (w), 1364 (m), 1341 (s), 1309 (w), 1212 (w), 1199 (m), 1176 (w), 1142 (w), 1109 (w), 1062 (w), 1028 (w), 949 (w), 906 (m), 880 (m), 859 (m), 815 (w), 802 (m), 768 (m), 740 (w), 724 (m), 705 (s), 688 (w), 667 (m), 654 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta_{H} = 10.07$ (d, 1H, J = 1.1 Hz, H₈), 8.59 (d, 1H, J = 10.0 Hz, H₄), 8.42 (s, 1H, H₂), 8.20 (d, 2H, J = 8.6 Hz, *m*-Ph'), 7.81 (d, 1H, J = 10.0 Hz, H₆), 7.59 (d, 2H, J = 7.5 Hz, *m*-Ph), 7.51–7.54 (m, 4H, *o*-Ph, *o*-Ph'), 7.48 (t, 1H, J = 10.0 Hz, H₅), 7.41 (t, 1H, J = 7.5 Hz, *p*-Ph), 4.54 (s, 2H, CH₂), 3.23 (sept, 1H, J = 7.0 Hz, *i*Pr), 1.41 (d, 6H, J = 7.0 Hz, *i*Pr) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{C} = 192.49$, 151.91, 146.84, 143.78, 141.96, 141.20, 140.34, 139.86, 139.41, 136.26, 135.84, 130.67, 130.38, 129.60, 128.88, 128.36, 127.09, 123.69, 121.70, 47.37, 39.23, 24.69 ppm; HRMS (MALDI–TOF): Calcd for C₂₇H₂₃NO₃ + H⁺ [M + H]⁺ 410.1751; found: 410.1745.

Water (0.5 mL) was added to a solution of **1m** (261 mg, 0.50 mmol) and CF_3CO_2H (0.5 mL) in THF (3 mL). The resulting mixture was stirred at 50 °C for 5 h. The reaction mixture was poured into aq. K_2CO_3 . The precipitated crystals were corrected by filtration. The crystal was dissolved in CH_2Cl_2 and the solution was passed through the short silica gel column to give **4** (223 mg, 90%) as red crystals.

M.p. 245–246 °C; IR (AT–IR): $v_{max} = 2954$ (w), 1686 (s), 1596 (m), 1586 (m), 1576 (m), 1523 (m), 1498 (s), 1466 (m), 1442 (m), 1419 (m), 1385 (m), 1332 (w), 1283 (w), 1251 (m), 1212 (s), 1151 (m), 1103 (w), 1087 (m), 1035 (m), 988 (w), 968 (w), 939 (w), 906 (w), 895 (w), 874 (w), 863 (w), 833 (m), 807 (w), 789 (m), 772 (m), 759 (w), 733 (w), 714 (w), 702 (w), 677 (w), 665 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta_{H} = 9.87$ (s, 1H, H₄), 9.75–9.72 (m, 2H, H_{6',10'}), 9.46 (d, 1H, J = 10.0 Hz, H₈), 8.88 (s, 1H, H₂), 8.06 (s, 1H, H_{4'}), 7.93–7.82 (m, 4H, H_{6,7',6',9'}), 7.67 (t, 1H, J = 10.0 Hz, H₇), 4.57 (q, 2H, J = 7.2 Hz, CO₂Et), 4.00 (s, 3H, CO₂Me), 3.28 (sept, 1H, J = 7.0 Hz, *i*Pr), 1.58 (t, 3H, J = 7.2 Hz, CO₂Et), 1.46 (d, 6H, J = 7.0 Hz, *i*Pr) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{C} = 165.68$, 165.55, 160.11, 158.07, 151.74, 151.13, 147.89, 144.45, 144.03, 140.80, 140.71, 140.00, 138.94, 138.90, 137.38, 137.30, 136.81, 133.17, 129.48, 119.15, 116.18, 109.58, 107.13, 101.12, 60.36, 51.39, 39.18, 24.68, 14.80 ppm, One signal is overlapped with other signal. HRMS (MALDI–TOF): Calcd for C₃₁H₂₆O₆⁺ [M]⁺ 494.1724; found: 494.1715.

To a degassed solution of **1f** (103 mg, 0.41 mmol), 2-iodophenol (152 mg, 0.69 mmol), and Cul (11 mg, 0.058 mmol) in triethylamine (2 mL) and THF (2 mL) was added tetrakis(triphenylphosphine)palladium(0) (16 mg, 0.014 mmol). The resulting mixture was stirred at 50 °C for 18 h under an Ar atmosphere. The reaction mixture was poured into a 10% NH₄Cl solution and extracted with hexane. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with hexane/AcOEt (10 : 1) to give **5** (77 mg, 55%) as green crystals.

M.p. 129–131 °C; IR (AT–IR): $v_{max} = 2959$ (w), 1693 (m), 1573 (w), 1524 (w), 1447 (m), 1386 (w), 1303 (w), 1259 (w), 1237 (w), 1208 (s), 1169 (w), 1125 (w), 1091 (w), 1012 (w), 964 (w), 929 (w), 898 (m), 800 (m), 776 (m), 749 (m), 738 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta_{H} = 9.80$ (d, 1H, J = 1.7 Hz, H₄), 9.12 (d, 1H, J = 10.0 Hz, H₈), 8.74 (s, 1H, H₂), 7.80 (d, 1H, J = 10.0 Hz, H₆), 7.61 (d, 1H, J = 7.5 Hz, H₄), 7.57 (d, 1H, J = 7.5 Hz, H₇), 7.52 (t, 1H, J = 10.0 Hz, H₇), 7.30–7.24 (m, 2H, H_{5',6'}), 7.01 (s, 1H, H_{3'}), 3.99 (s, 3H, CO₂Me), 3.24 (sept, 1H, J = 7.0 Hz, *i*Pr), 1.45 (d, 6H, J = 7.0 Hz, *i*Pr) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{C} = 165.70$, 154.64, 153.89, 150.23, 142.69, 139.56, 139.27, 139.22, 138.52, 136.31, 129.41, 127.89, 123.71, 122.98, 120.50, 117.47, 115.54, 110.98, 102.01, 51.27, 39.14, 24.67 ppm; HRMS (MALDI–TOF): Calcd for C₂₃H₂₀O₃⁺ [M]⁺ 344.1407; found: 344.1412.

Figure S1. ¹H NMR spectrum of **2** in CDCl₃ (500 MHz).

Figure S2. ¹³C NMR spectrum of **2** in CDCI₃ (125 MHz).

Figure S3. ¹H NMR spectrum of **3a** in CDCI₃ (500 MHz).

Figure S4. ¹³C NMR spectrum of **3a** in CDCl₃ (125 MHz).

Figure S6. ¹³C NMR spectrum of **3b** in CDCI₃ (125 MHz).

Figure S7. ¹H NMR spectrum of **3c** in CDCI₃ (500 MHz).

Figure S8. ¹³C NMR spectrum of **3c** in CDCI₃ (125 MHz).

Figure S9. ¹H NMR spectrum of **3d** in CDCl₃ (500 MHz).

Figure S10. ¹³C NMR spectrum of 3d in CDCl₃ (125 MHz).

Figure S12. ¹³C NMR spectrum of **3e** in CDCl₃ (125 MHz).

Figure S14. ¹³C NMR spectrum of **3f** in CDCI₃ (125 MHz).

Figure S16. ¹³C NMR spectrum of **3g** in CDCl₃ (125 MHz).

Figure S18. ¹³C NMR spectrum of **3h** in CDCl₃ (125 MHz).

Figure S19. ¹H NMR spectrum of **3i** in CDCl₃ (500 MHz).

Figure S20. ¹³C NMR spectrum of **3i** in CDCl₃ (125 MHz).

Figure S21. ¹H NMR spectrum of **3j** in CDCl₃ (500 MHz).

Figure S22. ¹³C NMR spectrum of **3j** in CDCl₃ (125 MHz).

Figure S23. ¹H NMR spectrum of **3k** in CDCI₃ (500 MHz).

Figure S24. ¹³C NMR spectrum of **3k** in CDCl₃ (125 MHz).

Figure S25. ¹H NMR spectrum of **3I** in CDCl₃ (500 MHz).

Figure S26. ¹³C NMR spectrum of **3I** in CDCI₃ (125 MHz).

Figure S28. ¹³C NMR spectrum of 4 in CDCl₃ (125 MHz).

Figure S30. ¹³C NMR spectrum of **5** in CDCl₃ (125 MHz).

Figure S44. HRMS of 4 (MALDI-TOF).

Figure S45. HRMS of 5 (MALDI-TOF).