Supporting Information

Preparation of organic mechanochromic fluorophores with simple structures and promising mechanochromic luminescence properties

Gaocan Li,* Yangyang Xu, Weihua Zhuang, and Yunbing Wang*

National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China

E-mail: gaocanli@scu.edu.cn; yunbing.wang@scu.edu.cn

Table of Contents

I. General remarks	S3
II. Synthesis of phosphonium salts	S3
III. Physical and photophysical properties of phosphonium salts	S8
IV. X-Ray structure determination	S10
V. Fluorescence decay profiles of 1·PF ₆ in different states	
VI.Excitation of 1·PF ₆ in different states	
VII. References	S14
VIII. Copies of ¹ H, ¹³ C, ¹⁹ F and ³¹ P NMR spectra	S15

I. General remarks

NMR spectra were obtained on a Bruker AV II-400 (Germany). The ¹H NMR chemical shifts were measured relative to DMSO- d_6 or CDCl₃ as the internal reference (DMSO- d_6 : $\delta = 2.50$ ppm; CDCl₃: $\delta = 7.26$ ppm). The ¹³C NMR chemical shifts were given using DMSO- d_6 or CDCl₃ as the internal standard (DMSO- d_6 : $\delta = 39.52$ ppm; CDCl₃: $\delta = 77.16$ ppm). Fluorescence emission spectra were obtained using a Horiba Jobin Yvon-Edison Fluoromax-4 fluorescence spectrometer (Japan). Absorption spectra were obtained on a HITACHI U-2910 spectrometer (Japan). The ESI-TOF mass spectra were recorded with a Shimadzu LCMS-IT-TOF instrument (Japan). Fluorescence lifetime data were determined on a HORIBA TEMPRO-01 instrument (Japan). Differential scanning calorimetry (DSC) data was performed using a TA instrument DSC-Q200 1474 (USA) with rate = 5 °C/min and range = 40 to 230 °C. All the tests were performed in Sichuan University, Chengdu.

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. DMSO- d_6 and CDCl₃ were purchased from Alfa. Other reagents and slovents were obtained from Chengdu Kelong Chemical Reagent Factory. Silica gel (size: 45-75 µm, relative surface area: 600-800 m²/g) was purchased from Qingdao Haiyang Chemical Factory. The 1-(bromomethyl)pyrene were prepared according to the literature procedures.^[1]

II. Synthesis of phosphonium salts

General procedure for the synthesis of phosphonium salts: A Schlenk tube with a magnetic stir bar was charged with bromomethylarene (2.0 mmol), trisubstituented phosphine (3.0 mmol) and EtOAc (10.0 mL) under N_2 . The reaction system was then evacuated and backfilled with N_2 for twice. After stirring at 75 °C for 8 h, the precipitate was filtered, washed by EtOAc to get the target phosphonium salt with bromide as the anion.

General procedure for the anion exchange: A Schlenk tube with a magnetic stir bar was charged with phosphonium bromide (1.0 mmol), metal salt with the target anion (2.0 mmol), CH_2Cl_2 (10.0 mL) and deionized water (5.0 mL). The resulting mixture

was stirred at room temperature for 24 h. Then the organic phase was separated and the aqueous phase was extracted with CH_2Cl_2 for 3 times. The combined organic phases were dried over anhydrous Na_2SO_4 and concentrated. The residue was purified by column chromatography on silica gel (MeOH/CH₂Cl₂) to afford the desired product.

Tributyl(pyren-1-ylmethyl)phosphonium bromide (1·Br)

Following the general procedure, 1-(bromomethyl)pyrene (590.3 mg, 2.0 mmol), tributylphosphine (0.75 mL, 3.0 mmol) and EtOAc (10.0 mL) were used. Purification via column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/15, v/v) afforded **1**·Br as a white solid (953.4 mg, 96% yield). ¹H NMR (DMSO-*d*₆, 400 MHz): δ = 0.76 (t, *J* = 7.2 Hz, 9H), 1.23-1.39 (m, 12H), 2.24-2.32 (m, 6H), 4.69 (d, *J* = 15.6 Hz, 2H), 8.10-8.17 (m, 2H), 8.23 (dd, *J* = 8.8 Hz, *J* = 12.0 Hz, 2H), 8.34-8.40 (m, 4H), 8.64 (d, *J* = 9.2 Hz, 1H) ppm. ¹³C NMR (DMSO-*d*₆, 100 MHz): δ = 18.0, 18.5, 23.0 (d, *J* = 4.6 Hz), 23.7, 23.8, 123.8, 124.0 (d, *J* = 9.3 Hz), 124.1, 124.7 (d, *J* = 2.6 Hz), 125.6 (d, *J* = 5.1 Hz), 130.6, 131.1 (d, *J* = 3.4 Hz), 131.2 ppm. ³¹P NMR (DMSO-*d*₆, 162 MHz): δ = 34.36 ppm. HRMS (ESI⁺): calcd for C₂₉H₃₈P [M]⁺ 417.2706, found 417.2697. Elemental analysis calcd (%) for M+H₂O: C 67.57, H 7.82, found: C 67.83, H 8.06.

Tributyl(pyren-1-ylmethyl)phosphonium (1·NTf₂) bis((trifluoromethyl)sulfonyl)amide

Following the general procedure, **1**·Br (497.5 mg, 1.0 mmol) and LiNTf₂ (574.2 mg, 2.0 mmol) were used. Purification via column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/20, v/v) afforded **1**·NTf₂ as a white solid (674.2 mg, 97% yield). ¹H NMR (DMSO-*d*₆, 400 MHz): $\delta = 0.78$ (t, J = 7.2 Hz, 9H), 1.25-1.40 (m, 12H), 2.20-2.28 (m, 6H), 4.62 (d, J = 16.0 Hz, 2H), 8.10-8.17 (m, 2H), 8.25 (dd, J = 8.8 Hz, J = 14.0 Hz, 2H), 8.37-8.41 (m, 4H), 8.58 (d, J = 9.2 Hz, 1H) ppm. ¹³C NMR (DMSO-*d*₆, 100 MHz): $\delta = 18.0$, 18.4, 23.0 (d, J = 4.6 Hz), 23.7, 23.8, 123.6 (d, J = 2.0 Hz), 123.8 (d, J = 9.2 Hz), 124.1, 124.8 (d, J = 2.3 Hz), 125.7 (d, J = 3.5 Hz), 126.0, 126.3, 127.1, 127.7, 128.3, 128.6, 129.4 (d, J = 3.2 Hz), 129.8 (d, J = 5.2 Hz), 130.6, 131.1 (d, J = 3.3 Hz), 131.2 ppm. ¹⁹F NMR (DMSO-*d*₆, 376 MHz): $\delta = -78.72$ ppm. ³¹P NMR (DMSO-*d*₆, 162 MHz): $\delta = 34.40$ ppm. HRMS (ESI⁺): calcd for C₂₉H₃₈P [M]⁺ 417.2706, found 417.2707. Elemental analysis calcd (%) for M+H₂O: C 52.02, H 5.63, N 1.96, found: C 52.20, H 5.60, N 1.79.

Tributyl(pyren-1-ylmethyl)phosphonium hexafluorophosphate (1·PF₆)

Following the general procedure, **1**·Br (497.5 mg, 1.0 mmol) and KPF₆ (368.1 mg, 2.0 mmol) were used. Purification via column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/20, v/v) afforded **1**·PF₆ as a a white solid (524.8 mg, 93% yield). ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 0.77$ (t, J = 7.2 Hz, 9H), 1.24-1.38 (m, 12H), 2.21-2.28 (m, 6H), 4.64 (d, J = 15.6 Hz, 2H), 8.11-8.15 (m, 2H), 8.23 (dd, J = 8.8 Hz, J = 12.4 Hz, 2H), 8.35-8.40 (m, 4H), 8.60 (d, J = 9.2 Hz, 1H) ppm. ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 18.0$, 18.5, 23.0 (d, J = 4.5 Hz), 23.7, 23.8, 123.7, 123.9 (d, J = 9.4 Hz), 124.1, 124.8 (d, J = 2.6 Hz), 125.7 (d, J = 3.2 Hz), 130.6, 131.1 (d, J = 3.6 Hz), 131.2 ppm. ¹⁹F NMR (DMSO- d_6 , 376 MHz): $\delta = -69.15$, -71.04 ppm. ³¹P NMR (DMSO- d_6 , 162 MHz): δ = 34.38, -130.98, -135.37, -139.76, -144.15, -148.54, -152.94, -157.33 ppm. HRMS (ESI⁺): calcd for C₂₉H₃₈P [M]⁺ 417.2706, found 417.2698. Elemental analysis calcd (%) for M+H₂O: C 60.00, H 6.94, found: C 60.77, H 6.60.

Tributyl(pyren-1-ylmethyl)phosphonium tetrafluoroborate (1·BF₄)

Following the general procedure, **1**·Br (497.5 mg, 1.0 mmol) and NaBF₄ (219.6 mg, 2.0 mmol) were used. Purification via column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/20, v/v) afforded **1**·BF₄ as a white solid (454.8 mg, 90% yield). ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 0.78$ (t, J = 7.2 Hz, 9H), 1.24-1.41 (m, 12H), 2.20-2.28 (m, 6H), 4.62 (d, J = 16.0 Hz, 2H), 8.10-8.16 (m, 2H), 8.24 (dd, J = 8.8 Hz, J = 12.4 Hz, 2H), 8.36-8.41 (m, 4H), 8.58 (d, J = 9.2 Hz, 1H) ppm. ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 18.0$, 18.5, 23.0 (d, J = 4.5 Hz), 23.7, 23.8, 123.7 (d, J = 1.7 Hz), 123.8 (d, J = 9.2 Hz), 124.1, 124.8 (d, J = 2.6 Hz), 125.7 (d, J = 3.2 Hz), 126.0, 126.3, 127.1, 127.7, 128.3, 128.6, 129.4 (d, J = 5.1 Hz), 129.9 (d, J = 5.1 Hz), 130.6, 131.1 (d, J = 3.4 Hz), 131.2 ppm. ¹⁹F NMR (DMSO- d_6 , 376 MHz): $\delta = -148.21$, -148.24 ppm. ³¹P NMR (DMSO- d_6 , 162 MHz): $\delta = 34.40$ ppm. HRMS (ESI⁺): calcd for C₂₉H₃₈P [M]⁺ 417.2706, found 417.2696. Elemental analysis calcd (%) for M: C 69.06, H 7.59, found: C 68.59, H 6.90.

Tricyclohexyl(pyren-1-ylmethyl)phosphonium bromide (2·Br)

Following the general procedure, 1-(bromomethyl)pyrene (590.3 mg, 2.0 mmol), tricyclohexylphosphine (840.6 mg, 3.0 mmol) and EtOAc (10.0 mL) were used. Purification via column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/15, v/v) afforded **2·Br** as a white solid (1.1310 g, 98% yield). ¹H NMR (DMSO-*d*₆, 400 MHz): δ = 1.13 (t, *J* = 12.4 Hz, 3H), 1.26 (q, *J* = 12.4 Hz, 6H), 1.45 (q, *J* = 12.4 Hz, 6H), 1.58-1.70 (m, 9H), 1.88-1.91 (m, 6H), 2.71 (q, *J* = 12.4 Hz, 3H), 4.77 (d, *J* = 12.4 Hz, 2H), 7.99 (dd, *J* = 1.6 Hz, *J* = 8.0 Hz, 1H), 8.14 (t, *J* = 7.6 Hz, 1H), 8.24 (dd, *J* = 8.8 Hz, *J* = 14.0 Hz, 2H), 8.36-8.42 (m, 4H), 8.68 (d, *J* = 9.2 Hz, 1H) ppm. ¹³C NMR (DMSO-*d*₆, 100 MHz): δ = 25.3, 26.4 (d, *J* = 3.6 Hz), 26.5 (d, *J* = 11.9 Hz), 30.7, 31.1, 124.0, 124.1, 124.7 (d, *J* = 8.4 Hz), 124.8 (d, *J* = 2.1 Hz), 125.7 (d, *J* = 2.7 Hz), 126.1, 126.4, 127.2, 127.7, 128.4, 128.5, 129.0 (d, *J* = 3.1 Hz), 129.8 (d, *J* = 5.5 Hz), 130.6, 131.0 (d, *J* = 2.9 Hz), 131.3 ppm. ³¹P NMR (DMSO-*d*₆, 162 MHz): δ = 32.44 ppm. HRMS (ESI⁺): calcd for C₃₅H₄₄P [M]⁺ 495.3175, found 495.3123. Elemental analysis calcd (%) for M+H₂O: C 70.82, H 7.81, found: C 71.02, H 7.67.

Trioctyl(pyren-1-ylmethyl)phosphonium bromide (3·Br)

Following the general procedure, 1-(bromomethyl)pyrene (590.3 mg, 2.0 mmol), trioctylphosphine (1.34 mL, 3.0 mmol) and EtOAc (10.0 mL) were used. Purification via column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/20, v/v) afforded **3**·Br as a white solid (1.2353 g, 93% yield). ¹H NMR (DMSO- d_6 , 400 MHz): δ = 0.81 (t, J = 7.2 Hz, 9H), 1.06-1.29 (m, 36H), 2.24-2.31 (m, 6H), 4.66 (d, J = 16.0 Hz, 2H), 8.11-8.16 (m, 2H), 8.24 (dd, J = 9.2 Hz, J = 15.2 Hz, 2H), 8.35-8.40 (m, 4H), 8.65 (d, J = 9.2 Hz, 1H) ppm. ¹³C NMR (DMSO- d_6 , 100 MHz): δ = 13.9, 17.8, 18.2, 20.5 (d, J = 4.6 Hz), 22.0, 28.1 (d, J = 14.3 Hz), 30.0 (d, J = 11.2 Hz), 31.1, 123.3, 123.5 (d, J = 9.3 Hz), 123.7, 124.4, 125.2, 125.5, 125.8, 126.6, 127.2, 127.9, 128.2, 128.8 (d, J =

4.1 Hz), 129.5 (d, J = 5.0 Hz), 130.2, 130.7, 130.9 ppm. ³¹P NMR (DMSO- d_6 , 162 MHz): $\delta = 34.01$ ppm. HRMS (ESI⁺): calcd for C₄₁H₆₂P [M]⁺ 585.4584, found 585.4575. Elemental analysis calcd (%) for M+H₂O: C 72.01, H 9.43, found: C 72.02, H 8.67.

Butyl-di-(1-adamantyl)-(pyren-1-ylmethyl)phosphonium bromide (4·Br)

Following the general procedure, 1-(bromomethyl)pyrene (590.3 mg, 2.0 mmol), cyclohexyldiphenylphosphine (1.0756 g, 3.0 mmol) and EtOAc (20.0 mL) were used. Purification via column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/20, v/v) afforded **4·Br** as a white solid (1.0854 g, 85% yield). ¹H NMR (CDCl₃, 400 MHz): δ = 0.79 (t, *J* = 7.2 Hz, 3H), 1.32-1.41 (m, 2H), 1.51-1.52 (m, 2H), 1.60-1.68 (m, 12H), 2.00-2.07 (m, 12H), 2.26-2.39 (m, 8H), 4.66 (d, *J* = 13.2 Hz, 2H), 7.71 (dd, *J* = 2.0 Hz, *J* = 8.0 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 1H), 7.92 (d, *J* = 8.8 Hz, 1H), 8.00-8.06 (m, 2H), 8.15-8.20 (m, 3H), 8.68 (d, *J* = 9.6 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 13.5, 14.3, 16.3, 16.6, 19.3, 19.7, 25.0 (d, *J* = 13.1 Hz), 26.4 (d, *J* = 6.0 Hz), 27.9 (d, *J* = 8.7 Hz), 35.7, 37.4 (d, *J* = 3.0 Hz), 41.5, 41.8, 123.4 (d, *J* = 9.0 Hz), 124.2, 124.4, 124.8 (d, *J* = 2.8 Hz), 125.2 (d, *J* = 2.1 Hz), 125.7, 126.0, 126.5, 127.3, 128.2, 128.4, 128.8 (d, *J* = 3.8 Hz), 129.6 (d, *J* = 5.4 Hz), 130.5, 131.0 (d, *J* = 2.7 Hz), 131.3 ppm. ³¹P NMR (CDCl₃, 162 MHz): δ = 28.86 ppm. HRMS (ESI⁺): calcd for C₄₀H₄₈P [M]⁺ 573.3645, found 573.3643. Elemental analysis calcd (%) for M+H₂O: C 73.31, H 7.80, found: C 72.70, H 7.99.

Triphenyl(pyren-1-ylmethyl)phosphonium bromide (5·Br)

Following the general procedure, 1-(bromomethyl)pyrene (590.3 mg, 2.0 mmol), triphenylphosphine (786.9 mg, 3.0 mmol) and EtOAc (10.0 mL) were used. Purification via column chromatography on silica gel (MeOH/CH₂Cl₂ = 1/15, v/v) afforded **5**·Br as a white solid (1.0350 g, 93% yield). ¹H NMR (DMSO-*d*₆, 400 MHz): δ = 5.95 (d, *J* = 15.6, 2H), 7.58-7.69 (m, 12H), 7.79-7.84 (m, 5H), 7.94 (d, *J* = 9.2Hz, 1H), 8.06 (t, *J* = 7.6 Hz, 1H), 8.11-8.15 (m, 2H), 8.20-8.25 (m, 2H), 8.31 (d, *J* = 7.6 Hz, 1H) ppm. ¹³C NMR (DMSO-*d*₆, 100 MHz): δ = 26.6 (d, *J* = 45.9 Hz), 117.6, 118.4, 121.7 (d, *J* = 9.3 Hz), 123.4, 123.8, 124.4 (d, *J* = 2.8 Hz), 125.1 (d, *J* = 3.7 Hz), 125.9, 126.2, 127.0, 127.6, 128.5, 129.8 (d, *J* = 5.2 Hz), 130.2 (d, *J* = 1.0 Hz), 130.4 (d, *J* = 12.3 Hz), 130.7 (d, *J* = 5.8 Hz), 131.1 (d, *J* = 1.1 Hz), 131.2 (d, *J* = 3.8 Hz), 134.6 (d, *J* = 9.8 Hz), 135.4 (d, *J* = 2.7 Hz) ppm. ³¹P NMR (DMSO-*d*₆, 162 MHz): δ = 22.55 ppm. HRMS (ESI⁺): calcd for C₃₅H₂₆P [M]⁺ 477.1767, found 477.1764. Elemental analysis calcd (%) for M+H₂O: C 73.05, H 4.90, found: C 73.59, H 4.76.

III. Physical and photophysical properties of phosphonium salts

Figure S1. Fluorescence emission spectra of phosphonium salts in different states in solid state (excited at the corresponding maximum excitation wavelength).

IV. X-Ray structure determination

Colorless block crystals of tributyl(pyren-1-ylmethyl)phosphonium hexafluorophosphate $1 \cdot PF_6$ were obtained by slow evaporation of an ethyl acetate solution and light yellow block crystals tributyl(pyren-1-ylmethyl)phosphonium bis((trifluoromethyl)sulfonyl)amide $1 \cdot NTf_2$ were obtained by slow diffusion of Et₂O to the MeOH solution in refrigerator. X-Ray single-crystal diffraction data were collected on a Oxford Xcalibur E CCD area-detector diffractometer with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å) with ω scan mode. The crystal parameters, data collection and refinement results for the compound are summarized in Table S1.

Table S1. Crystallographic Data

tributyl(pyren-1-ylmethyl)phosphonium

hexafluoronhosnhate	(1·PFa)	and
пеланиогорнозрнате	(1116)	anu

tributyl(pyren-1-ylmethyl)phosphonium

	bis((trifl	uoromethyl)su	ulfonyl)amide	$(1 \cdot NTf_2).$
--	------------	---------------	---------------	--------------------

	1 · PF ₆	$1 \cdot NTf_2$
empirical formula	$C_{29}H_{38}F_6P_2$	$C_{31}H_{38}F_6NO_4PS_2$
formula weight (M)	562.53	697.71
temperature (K)	293(2)	100(2)
wavelength (Å)	0.71073	0.71073
crystal system	triclinic	triclinic
space group	<i>P</i> -1	<i>P</i> -1
<i>a</i> (Å)	10.7112(6)	10.7725(3)
<i>b</i> (Å)	11.0294(6)	16.6577(5)
<i>c</i> (Å)	13.6960(5)	18.3152(7)
α (deg)	107.945(4)	98.142(3)
β (deg)	96.334(4)	94.137(3)
γ (deg)	107.336(5)	92.423(2)
$V(Å^3)$	1432.53(12)	3240.38(19)
Ζ	2	2
D_{calc} (g cm ⁻³)	1.304	1.432
μ (mm ⁻¹)	0.207	2.593
<i>F</i> (000)	592	1460
crystal size (mm)	0.30×0.20×0.20	0.80×0.80×0.50
reflns collected	11380	27178
unique reflns	5842	12306
$R_{\rm int}$	0.0205	0.0550
goodness-of-fit on F^2	1.068	1.047
$R_1, wR_2 [I > 2\sigma(I)]$	0.0634, 0.1793	0.0715, 0.1911

for

Figure S2. ORTEP drawing of the single crystal of $1 \cdot PF_6$ (left) and $1 \cdot NTf_2$ (right) with 50% probability thermal ellipsoids.

Figure S3. Molecular stacking of the single crystals of $1 \cdot PF_6$: side view (left) and front view (right).

Figure S4. Molecular stacking of the single crystals of 1·NTf₂: side view (left) and front view (right).

V. Fluorescence decay profiles of 1 · PF₆ in different states

Figure S5. Fluorescence decay profiles of the pristine powder (left) and ground sample (right) of 1-PF₆.

V. Excitation of 1.PF₆ in different states

Figure S6. Excitation of the pristine powder and ground sample of $1 \cdot PF_6$ monitored in different emission wavelength.

After grinding, red-shifted excitation could be observed for the ground sample of $1 \cdot PF_6$, which was in accordence with the enhanced $\pi - \pi$ interactions of the adjacent pyrene planes in the amorphous phase emerged by grinding.

VII. References

[1] S. Y. Park, J. H. Yoon, C. S. Hong, R. Souane, J. S. Kim, S. E. Matthews, J. Vicens, J. Org. Chem. 2008, 73, 8212.

VIII. Copies of ¹H, ¹³C, ¹⁹F and ³¹P NMR spectra

110 100 f1 (ppm) -10 130 120

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 -230 f1 (span)

