Supplementary Information

## Synthesis of Catalytically Active Gold Clusters on the Surface

## of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> Nanoparticles

Paulino Alonso-Cristobal,<sup>1</sup> M. Arturo Lopez-Quintela,<sup>2</sup> Rafael Contreras-Caceres<sup>3</sup>, Enrique Lopez-Cabarcos<sup>1</sup>, Jorge Rubio-Retama<sup>1</sup>, and Marco Laurenti<sup>\*1</sup>

<sup>1</sup>Department of Physical-Chemistry II, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain.

<sup>2</sup>Grupo Nanomag, Instituto de Investigacións Tecnolóxicas, Universidade de Santiago de Compostela, Spain.

<sup>3</sup>Department of Organic Chemistry University of Malaga, Málaga, Spain.

## **Author Information**

## **Corresponding Authors**

\*Email: <u>mlaurent@ucm.es</u>

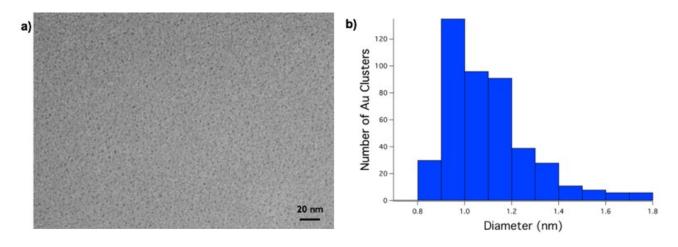



Figure S1. a) TEM image of the Au clusters obtained in water by simply mixing 25  $\mu$ L of HAuCl<sub>4</sub> 30 mM and 10 mL of TTMAPP porphyrin 0.1 mM at acidic pH. b) Size distribution of the synthesized Au clusters calculated using Image J v1.50i.

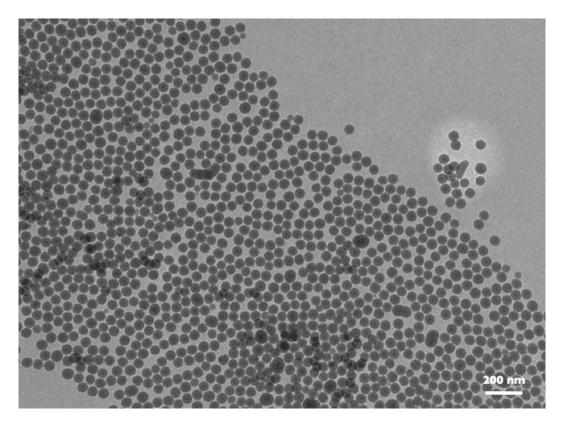



Figure S2. TEM micrograph showing  $Fe_3O_4@SiO_2$  nanoparticles obtained in high yield with a homogenous size distribution.

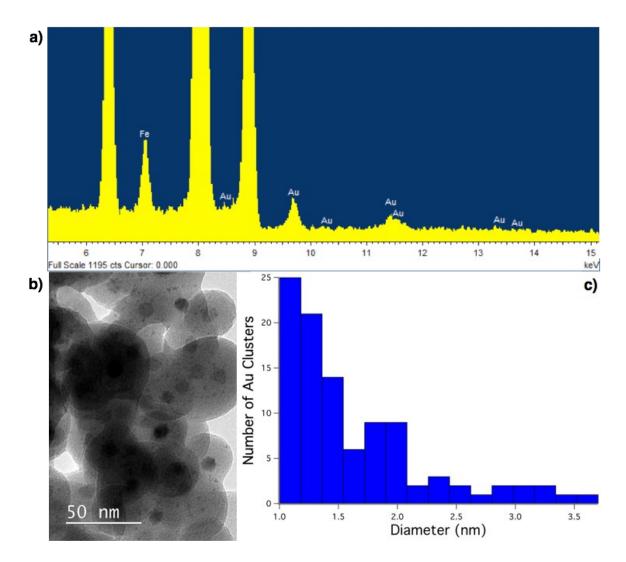



Figure S3. a) Energy Dispersive X-ray Spectroscopy (EDS) confirms the presence of Au onto the surface of the  $Fe_3O_4@SiO_2$  nanoparticles. The quantification of the elements composing the system was 8.45% of Fe, 89.29% of Si, and 2.26% of Au found on the  $Fe_3O_4@SiO_2@Au$  nanoparticles analyzed in image b). c) Representation of the size distribution of the Au clusters deposited on  $SiO_2$  nanoparticles.

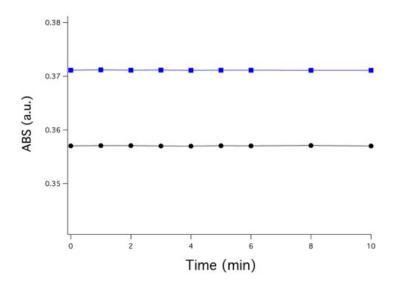



Figure S4. Control experiments were performed by measuring the absorbance at 400 nm during 10 minutes of the system composed by 200  $\mu$ L of 4-NP (2 mmol L<sup>-1</sup>), 1.4 mL of NaBH<sub>4</sub> (100 mmol L<sup>-1</sup>) and 1.4 mL of H<sub>2</sub>O represented by the blue line, and the black line represents the same system after adding 20  $\mu$ L of the Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> with encapsulated TTMAPP.

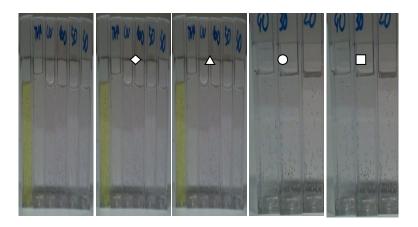



Figure S5. From left to right, cuvettes showing the resulting solutions after using different amounts of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@Au nanoparticles: 0,  $\diamond$ 0.66,  $\Delta$ 1.00,  $\bigcirc$ 1.65, and  $\square$ 3.30 µg. The intense yellow color indicates the formation of the 4-nitrophenolate ions after NaBH<sub>4</sub> addition.