Electronic Supplementary Information (ESI)

The investigation of the electrochemically supercapacitive

performances of mesoporous CuCo₂S₄

Yirong Zhu^{a,b}, Xiaobo Ji^c, Han Chen^a, Liujiang Xi^a, Wenqiang Gong^a and Yong

Liu*^b

^aCollege of Metallurgy and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China. E-mail: zhuyirong2004@163.com

^bState Key Lab of Powder Metallurgy, Central South University, Changsha, 410083,

China. E-mail: yonliu@csu.edu.cn

^cCollege of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China. E-mail: xji@csu.edu.cn

Sample	Specific	Rate capacity	Cycling capacity	Electrolyte	Reference
	capacitance	retention	retention		
CuCo ₂ O ₄	338 F g ⁻¹ at 1 A g ⁻¹	26% (from 1 to	96% (1000 cycles	3 M KOH	[S1]
nanostructures		50 A g ⁻¹)	at 2 A g ⁻¹)		
$CuCo_2S_4$ nanoparticles	5030 F g ⁻¹ at	27.1% (from 20 to	79.5% (2000 cycles	polysulfide	[S2]
	20 A g ⁻¹	70 A g ⁻¹)	at 70 A g ⁻¹)		
$Zn_{0.76}Co_{0.24}S$	486.2 F g ⁻¹ at	65.4% (from 2 to	86.4% (2000 cycles	1 M KOH	[S3]
nanostructures	2 A g ⁻¹	20 A g ⁻¹)	at 5 A g ⁻¹)		
Nanoparticle-like CuS	371 F g ⁻¹ at 1 A g ⁻¹	/	/	2 M KOH	[S4]
NiS2 nanostructures	695 F g ⁻¹ at	22.7% (from 1.25	93.4% (3000 cycles	3 M KOH	[85]
	1.25 A g ⁻¹	to 12.5 A g ⁻¹)	at 1.25 A g ⁻¹)		
Porous ZnCo ₂ O ₄	457 F g ⁻¹ at 1 A g ⁻¹	80.5% (from 1 to	97.9% (1500 cycles	6 M KOH	[S6]
nanoparticles		20 A g ⁻¹)	at 2 A g ⁻¹)		
CoNi2S4 nanoparticles	1169 F g ⁻¹ at 1 A g ⁻¹	60.1% (from 1 to	49% (2000 cycles	3 M KOH	[S7]
		5 A g ⁻¹)	at 4 A g ⁻¹)		
CoS2 nanodendrite	323.05 F g ⁻¹ at	65.3% (from 0.5	80.22% (3000 cycles	2 M KOH	[S8]
	0.5 A g ⁻¹	to 8 A g ⁻¹)	at 4 A g ⁻¹)		
Mesoporous MnCo ₂ O ₄	346 F g ⁻¹ at 1 A g ⁻¹	/	88% (2000 cycles	6 M KOH	[S9]
nanostructure			at 5 A g ⁻¹)		
Nanostructured	671 F g ⁻¹ at 1 A g ⁻¹	53.2% (from 1 to	98% (7000 cycles	1 M KOH	[S10]
NiCo ₂ O ₄		20 A g ⁻¹)	at 1 A g ⁻¹)		
Mesoporous CuCo ₂ S ₄	752 F g ⁻¹ at 2 A g ⁻¹	47.9% (from 2 to	98.1% (5000 cycles	2 M KOH	This work
nanoparticles		100 A g ⁻¹)	at 3 A g ⁻¹)		

Table. S1 Comparison of the electrochemical performances of the as-prepared mesoporous $CuCo_2S_4$ nanoparticles with previously reported ternary and binary metal sulfides/oxides nanostructures.

References:

- [S1] A. Pendashteh, M. S. Rahmanifar, R. B. Kaner and M. F. Mousavi, *Chem. Commun.*, 2014, 50, 1972-1975.
- [S2] J. Tang, Y. Ge, J. Shen and M. Ye, Chem. Commun., 2016, 52, 1509-1512.
- [S3] J. Yang, Y. Zhang, C. Sun, G. Guo, W. Sun, W. Huang, Q. Yan and X. Dong, J. Mater. Chem. A., 2015, 3, 11462-11470.
- [S4] H. Peng, G. Ma, J. Mu, K. Sun and Z. Lei, *Materials Letters*, 2014, 122, 25-28.
- [S5] H. Pang, C. Wei, X. Li, G. Li, Y. Ma, S. Li, J. Chen and J. Zhang, *Scientific Reports*, 2014, 4, 3577.
- [S6] S. Chen, M. Xue, Y. Li, Y. Pan, L. Zhu, D. Zhang, Q. Fang and S. Qiu, *Inorg. Chem. Front.*, 2015, 2, 177-183.
- [S7] W. Du, Z. Zhu, Y. Wang, J. Liu, W. Yang, X. Qian and H. Pang, RSC Adv., 2014, 4, 6998-7002.
- [S8] D. Zhang, H. Liu, J. Zhang, X. Wang, R. Zhang, J. Zhou, J. Zhong and B. Yuan, Int. J. Electrochem. Sci., 2016, 11, 6791-6798.
- [S9] N. Padmanathan and S. Selladurai, *Ionics*, 2014, 20, 479-487.
- [S10] C. Wang, X. Zhang, D. Zhang, C. Yao and Y. Ma, *Electrochim. Acta*, 2012, 63, 220-227.