SUPPORTING INFORMATION

Carbon-Carbon vs. Carbon-Oxygen bond activation in 2- and 3-

Furonitriles with Nickel.

Ilnett García-Ventura, Marcos Flores-Alamo and Juventino J. García*

Facultad de Química, Universidad Nacional Autónoma de México. Ciudad

Universitaria. Mexico City, 04510.

juvent@unam.mx

INDEX OF FIGURES

Figure S1. ³¹P{¹H}-NMR following up of stoichiometric reaction between complex (1) and 2-FN at room temperature in THF-d₈. _____S4

Figure S2. ¹H-NMR following up of stoichiometric reaction between complex (1) and 2-FN at room temperature in THF-d₈. _____S4

Figure S3. ³¹P{¹H}-NMR following up of reaction between complex (1) and an excess of 2-FN at room temperature in THF-d₈. * Impurity from complex (1). ____S6

Figure S4. ¹H-NMR following up of reaction between complex (1) and an excess of 2-FN at room temperature in THF-d₈._____S6

Figure S5. ${}^{31}P{}^{1}H$ -NMR following up of thermolisys of complex (7) at 100 °C in THF-d₈. ______S8

Figure S6. ¹*H-NMR* following up of thermolisys of complex (7) at 100 °C in THFd₈. ______S9

Figure S7. ${}^{31}P{}^{1}H{}$ -NMR following up of reaction between complex (1) and 3-FN by 6 days at room temperature in THF-d₈. ______S12

Figure S8. ¹*H-NMR* following up of reaction between complex (1) and 3-FN by 6 days at room temperature in THF-d₈. ______S12

Figure S9. Comparison between ¹H-NMR spectrum of 3-FN and reaction solution after 6 days of reaction at room temperature by in THF-d₈. ______S13

INDEX OF SPECTRUMS

Spectrum S1. ³¹ P{ ¹ H}-NMR spectrum of initial reaction between complex (1) and an excess of 2-FN in THF-d ₈ at room temperature. Signals assigned to complex (2)S5
Spectrum S2 . ¹ H-NMR spectrum of initial reaction between complex (1) and an excess of 2-FN in THF-d ⁸ at room temperature. Signals assigned to complex (2) and 2-FNS5
Spectrum S3 . ¹³ C{ ¹ H}-NMR spectrum of complex (7) in THF-d ₈ at room temperature. Signals assigned to heteroaromatic carbons and nitrile carbonS7
Spectrum S4 . Mass spectrum of 2,2'-bifuryl, resulted from reaction of complex (7) at room temperature by 6 days in THF-d ₈ S8
Spectrum S5 . ³¹ P{ ¹ H}-NMR spectrum of pure complex (9)S9
Spectrum S6. ¹ H-NMR spectrum of pure complex (9)S10
Spectrum S7 . Mass spectrum corresponding to 2-FN, obteinded from thermolisys of complex (7) after 4 hours at 100 °CS11
Spectrum S8 . Mass spectrum corresponding to (5), obteinded from thermolisys of complex (7) after 4 hours at 100 °CS11
Spectrum S9 . ¹³ C{ ¹ H}-NMR spectrum of complex (11) in THF-d ₈ at room temperature. Signals assigned to heteroaromatic carbons and nitrile carbonS13
Spectrum S10 . Mass spectrum corresponding to (13), obteinded from thermolisys of complex (11) after 4 hours at 100 °CS14
Spectrum S11 . Mass spectrum corresponding to 3-FN, obteinded from thermolisys of complex (11) after 4 hours at 100 °CS15

INDEX OF CRYSTALLOGRAPHIC TABLES

Table S1. Crystal data and structure refinament for complex (7).	S15
Table S2 . Atomic coordinates and equivalent isotropic displacement par for complex (7).	ameters S16
Table S3. Bond lengths and angles for complex (7).	S17
Table S4. Anisotropic displacement parameters for complex (7).	S22
Table S5. Torsion angles [°] for (7).	S22
Table S6. Hydrogen bonds for complex (7).	S24
Table S7. Crystal data and structure refinement for complex (11).	S24
Table S8. Atomic coordinates and equivalent isotropic displacement par for complex (11).	ameters S25
Table S9. Bond lengths and angles for complex (11).	S26
Table S10. Anisotropic displacement parameters for complex (11).	S36
Table S11. Torsion angles [°] for (11).	S37
Table S12. Hydrogen bonds for complex (11).	S40

⁸⁶ 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 **Figure S1.** ${}^{31}P{}^{1}H$ -NMR following up of stoichiometric reaction between complex (1) and 2-FN at room temperature in THF-d₈.

8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 f1 (ppm)

Figure S2. ¹H-NMR following up of stoichiometric reaction between complex (1) and **2-FN** at room temperature in THF-d₈.

Spectrum S1. ³'P{'H}-NMR spectrum of initial reaction between complex (1) and an excess of **2-FN** in THF-d₈ at room temperature. Signals assigned to complex (2). * Impurity from complex (1).

Spectrum S2. ¹H-NMR spectrum of initial reaction between complex (1) and an excess of **2-FN** in THF-d⁸ at room temperature. Signals assigned to complex (2) and **2-FN**.

Figure S3. ³¹P{¹H}-NMR following up of reaction between complex (1) and an excess of **2-FN** at room temperature in THF-d₈. * Impurity from complex (1).

Figure S4. ¹H-NMR following up of reaction between complex (1) and an excess of **2-FN** at room temperature in THF-d₈.

Spectrum S3. ¹³C{¹H}-NMR spectrum of complex **(7)** in THF-d₈ at room temperature. Signals assigned to heteroaromatic carbons and nitrile carbon.

Chromatogram S1. Chromatogram of reaction of complex (7) after 6 days at room temperature in TFH-d₈. Peak assigned to compound 2,2'-bifuryl.

Spectrum S4. Mass spectrum of **2,2'-bifuryI**, resulted from reaction of complex (7) at room temperature by 6 days in THF- d_8 .

Figure S5. ³¹P{¹H}-NMR following up of thermolisys of complex (7) at 100 °C in THF-d₈.

Figure S6. ¹H-NMR following up of thermolisys of complex (7) at 100 °C in THF-d₈.

Abundance

Chromatogram S2. Chromatogram of thermolisys of complex (7) after 4 hours at 100 °C.

Spectrum S7. Mass spectrum corresponding to **2-FN**, obtained from thermolisys of complex (7) after 4 hours at 100 °C

Spectrum S8. Mass spectrum corresponding to **(5)**, obtainded from thermolisys of complex **(7)** after 4 hours at 100 °C.

Figure S7. ³¹P{¹H}-NMR following up of reaction between complex (1) and 3-**FN** by 6 days at room temperature in THF-d₈.

Figure S8. ¹H-NMR following up of reaction between complex (1) and 3-FN by 6 days at room temperature in THF-d₈.

Figure S9. Comparison between ¹H-NMR spectrum of **3-FN** and reaction solution after 6 days of reaction at room temperature by in THF-d₈.

Spectrum S9. ¹³C{¹H}-NMR spectrum of complex (**11**) in THF-d₈ at room temperature. Signals assigned to heteroaromatic carbons and nitrile carbon.

Chromatogram S3. Chromatogram of thermolisys of complex (11) after 4 hours at 100 °C.

Spectrum S10. Mass spectrum corresponding to **(13)**, obteinded from thermolisys of complex **(11)** after 4 hours at 100 °C.

Spectrum S11. Mass spectrum corresponding to **3-FN**, obteinded from thermolisys of complex **(11)** after 4 hours at 100 °C.

Cristalographic data for complex (7).

Identification code	7	
Empirical formula	C19 H35 N Ni O P2	
Formula weight	414.13	
Temperature	130(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/n	
Unit cell dimensions	a = 10.9347(15) Å	<i>α</i> = 90°.
	b = 14.4261(14) Å	β= 107.794(13)°.
	c = 13.9266(16) Å	$\gamma = 90^{\circ}$.
Volume	2091.8(4) Å ³	•
Z	4	
Density (calculated)	1.315 Mg/m ³	
Absorption coefficient	1.087 mm ⁻¹	
F(000)	888	
Crystal size	0.490 x 0.400 x 0.330 mm ³	
Theta range for data collection	3.436 to 29.582°.	
Index ranges	-10<=h<=13, -18<=k<=19, -	
	18<=l<=19	

Table S1. Crystal data and structure refinament for complex (7).

Reflections collected	10578
Independent reflections	4940 [R(int) = 0.0366]
Completeness to theta = 25.242°	99.4 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4940 / 0 / 225
Goodness-of-fit on F ²	1.078
Final R indices [I>2sigma(I)]	R1 = 0.0428, wR2 = 0.0800
R indices (all data)	R1 = 0.0765, wR2 = 0.0939
Extinction coefficient	n/a
Largest diff. peak and hole	0.645 and -0.463 e.Å ⁻³

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **7**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
C(1)	873(3)	8191(2)	6028(2)	26(1)
C(2)	2056(3)	8366(2)	5672(2)	26(1)
C(3)	2815(3)	6659(2)	4925(2)	29(1)
C(4)	1445(3)	6293(2)	4706(2)	36(1)
C(5)	3745(4)	5857(2)	5004(3)	46(1)
C(6)	4752(3)	7987(2)	6010(2)	27(1)
C(7)	5392(3)	8495(2)	6995(2)	38(1)
C(8)	4584(3)	8628(2)	5102(2)	36(1)
C(9)	1583(3)	8542(2)	8185(2)	25(1)
C(10)	2782(3)	9095(2)	8223(2)	35(1)
C(11)	1652(4)	8188(2)	9229(2)	42(1)
C(12)	-116(3)	6992(2)	7306(2)	26(1)
C(13)	-366(3)	6143(2)	6611(3)	37(1)
C(14)	-1290(3)	7622(2)	7093(3)	38(1)
C(15)	4648(3)	6100(2)	7748(2)	26(1)
C(16)	5223(3)	5526(2)	8525(2)	26(1)
C(17)	6413(3)	5211(2)	8436(2)	30(1)
C(18)	6521(3)	5599(2)	7607(3)	44(1)
C(19)	2698(3)	6188(2)	8508(2)	30(1)

O (1)	5483(2)	6144(2)	7158(2)	50(1)
Ni(1)	3078(1)	6778(1)	7425(1)	21(1)
P(1)	3243(1)	7427(1)	6044(1)	21(1)
P(2)	1341(1)	7603(1)	7248(1)	21(1)
N(1)	2399(3)	5816(2)	9127(2)	45(1)

Table S3. Bond lengths [Å] and angles [°] for 7.

C(1)-C(2)	1.541(4)
C(1)-P(2)	1.827(3)
C(1)-H(1A)	0.9900
C(1)-H(1B)	0.9900
C(2)-P(1)	1.837(3)
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(3)-C(5)	1.522(4)
C(3)-C(4)	1.528(4)
C(3)-P(1)	1.852(3)
C(3)-H(3)	1.0000
C(4)-H(4A)	0.9800
C(4)-H(4B)	0.9800
C(4)-H(4C)	0.9800
C(5)-H(5A)	0.9800
C(5)-H(5B)	0.9800
C(5)-H(5C)	0.9800
C(6)-C(7)	1.525(4)
C(6)-C(8)	1.531(4)
C(6)-P(1)	1.850(3)
C(6)-H(6)	1.0000
C(7)-H(7A)	0.9800
C(7)-H(7B)	0.9800
C(7)-H(7C)	0.9800
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(8)-H(8C)	0.9800
C(9)-C(11)	1.521(4)

C(9)-C(10)	1.522(4)
C(9)-P(2)	1.842(3)
C(9)-H(9)	1.0000
С(10)-Н(10А)	0.9800
C(10)-H(10B)	0.9800
С(10)-Н(10С)	0.9800
C(11)-H(11A)	0.9800
C(11)-H(11B)	0.9800
С(11)-Н(11С)	0.9800
C(12)-C(14)	1.527(4)
C(12)-C(13)	1.533(4)
C(12)-P(2)	1.844(3)
C(12)-H(12)	1.0000
C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
С(13)-Н(13С)	0.9800
C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800
C(15)-C(16)	1.355(4)
C(15)-O(1)	1.404(3)
C(15)-Ni(1)	1.906(3)
C(16)-C(17)	1.419(4)
С(16)-Н(16)	0.9500
C(17)-C(18)	1.321(4)
С(17)-Н(17)	0.9500
C(18)-O(1)	1.365(4)
C(18)-H(18)	0.9500
C(19)-N(1)	1.145(4)
C(19)-Ni(1)	1.885(3)
Ni(1)-P(2)	2.1910(8)
Ni(1)-P(1)	2.1964(8)
C(2)-C(1)-P(2)	110.59(19)
C(2)-C(1)-H(1A)	109.5
P(2)-C(1)-H(1A)	109.5
C(2)-C(1)-H(1B)	109.5
P(2)-C(1)-H(1B)	109.5

H(1A)-C(1)-H(1B)	108.1
C(1)-C(2)-P(1)	112.23(19)
C(1)-C(2)-H(2A)	109.2
P(1)-C(2)-H(2A)	109.2
C(1)-C(2)-H(2B)	109.2
P(1)-C(2)-H(2B)	109.2
H(2A)-C(2)-H(2B)	107.9
C(5)-C(3)-C(4)	110.1(3)
C(5)-C(3)-P(1)	113.7(2)
C(4)-C(3)-P(1)	110.8(2)
C(5)-C(3)-H(3)	107.3
C(4)-C(3)-H(3)	107.3
P(1)-C(3)-H(3)	107.3
C(3)-C(4)-H(4A)	109.5
C(3)-C(4)-H(4B)	109.5
H(4A)-C(4)-H(4B)	109.5
C(3)-C(4)-H(4C)	109.5
H(4A)-C(4)-H(4C)	109.5
H(4B)-C(4)-H(4C)	109.5
C(3)-C(5)-H(5A)	109.5
C(3)-C(5)-H(5B)	109.5
H(5A)-C(5)-H(5B)	109.5
C(3)-C(5)-H(5C)	109.5
H(5A)-C(5)-H(5C)	109.5
H(5B)-C(5)-H(5C)	109.5
C(7)-C(6)-C(8)	111.0(3)
C(7)-C(6)-P(1)	110.7(2)
C(8)-C(6)-P(1)	113.7(2)
C(7)-C(6)-H(6)	107.0
C(8)-C(6)-H(6)	107.0
P(1)-C(6)-H(6)	107.0
C(6)-C(7)-H(7A)	109.5
C(6)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
C(6)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5

C(6)-C(8)-H(8A)	109.5
C(6)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
C(6)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
C(11)-C(9)-C(10)	110.6(3)
C(11)-C(9)-P(2)	112.7(2)
C(10)-C(9)-P(2)	110.2(2)
C(11)-C(9)-H(9)	107.7
C(10)-C(9)-H(9)	107.7
P(2)-C(9)-H(9)	107.7
C(9)-C(10)-H(10A)	109.5
C(9)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
С(9)-С(10)-Н(10С)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(9)-C(11)-H(11A)	109.5
C(9)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
C(9)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
C(14)-C(12)-C(13)	112.1(3)
C(14)-C(12)-P(2)	113.1(2)
C(13)-C(12)-P(2)	110.2(2)
C(14)-C(12)-H(12)	107.0
C(13)-C(12)-H(12)	107.0
P(2)-C(12)-H(12)	107.0
C(12)-C(13)-H(13A)	109.5
C(12)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(12)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(12)-C(14)-H(14A)	109.5

C(12)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
C(12)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
C(16)-C(15)-O(1)	105.6(3)
C(16)-C(15)-Ni(1)	131.8(2)
O(1)-C(15)-Ni(1)	122.6(2)
C(15)-C(16)-C(17)	109.9(3)
C(15)-C(16)-H(16)	125.0
C(17)-C(16)-H(16)	125.0
C(18)-C(17)-C(16)	105.6(3)
C(18)-C(17)-H(17)	127.2
C(16)-C(17)-H(17)	127.2
C(17)-C(18)-O(1)	111.1(3)
C(17)-C(18)-H(18)	124.4
O(1)-C(18)-H(18)	124.4
N(1)-C(19)-Ni(1)	176.0(3)
C(18)-O(1)-C(15)	107.8(2)
C(19)-Ni(1)-C(15)	88.98(13)
C(19)-Ni(1)-P(2)	86.57(9)
C(15)-Ni(1)-P(2)	173.04(9)
C(19)-Ni(1)-P(1)	172.07(10)
C(15)-Ni(1)-P(1)	96.68(9)
P(2)-Ni(1)-P(1)	88.28(3)
C(2)-P(1)-C(6)	103.28(14)
C(2)-P(1)-C(3)	103.23(14)
C(6)-P(1)-C(3)	103.74(13)
C(2)-P(1)-Ni(1)	108.75(9)
C(6)-P(1)-Ni(1)	121.40(10)
C(3)-P(1)-Ni(1)	114.49(10)
C(1)-P(2)-C(9)	104.86(14)
C(1)-P(2)-C(12)	105.25(14)
C(9)-P(2)-C(12)	105.06(13)
C(1)-P(2)-Ni(1)	110.09(10)
C(9)-P(2)-Ni(1)	112.80(10)
C(12)-P(2)-Ni(1)	117.75(10)

Table S4. Anisotropic displacement parameters ($Å^2x \ 10^3$) for **7**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	25(2)	24(2)	29(2)	6(1)	7(1)	8(1)
C(2)	32(2)	23(2)	25(1)	4(1)	12(1)	5(1)
C(3)	41(2)	25(2)	27(2)	-5(1)	19(1)	-4(1)
C(4)	39(2)	36(2)	33(2)	-8(2)	10(1)	-5(2)
C(5)	48(2)	36(2)	65(2)	-18(2)	32(2)	-6(2)
C(6)	27(2)	27(2)	31(2)	-1(1)	16(1)	-2(1)
C(7)	32(2)	47(2)	39(2)	-13(2)	16(2)	-12(2)
C(8)	44(2)	31(2)	43(2)	9(2)	27(2)	-1(2)
C(9)	27(2)	23(1)	27(2)	-2(1)	13(1)	0(1)
C(10)	34(2)	34(2)	41(2)	-10(2)	17(2)	-9(2)
C(11)	63(2)	35(2)	34(2)	-5(2)	25(2)	-4(2)
C(12)	23(2)	25(2)	35(2)	-1(1)	15(1)	-1(1)
C(13)	31(2)	28(2)	57(2)	-11(2)	23(2)	-9(1)
C(14)	25(2)	33(2)	60(2)	-13(2)	20(2)	-2(1)
C(15)	27(2)	24(2)	30(2)	2(1)	14(1)	2(1)
C(16)	26(2)	25(2)	25(2)	-1(1)	5(1)	1(1)
C(17)	26(2)	25(2)	36(2)	0(1)	4(1)	4(1)
C(18)	34(2)	48(2)	58(2)	14(2)	27(2)	18(2)
C(19)	32(2)	29(2)	31(2)	7(1)	15(1)	7(1)
O (1)	46(2)	62(2)	57(2)	30(1)	37(1)	28(1)
Ni(1)	23(1)	21(1)	22(1)	4(1)	11(1)	4(1)
P(1)	25(1)	20(1)	22(1)	2(1)	11(1)	2(1)
P(2)	21(1)	19(1)	24(1)	1(1)	10(1)	1(1)
N(1)	54(2)	44(2)	49(2)	19(2)	33(2)	20(2)

Table S5. Torsion angles [°] for 7.

P(2)-C(1)-C(2)-P(1)	34.9(3)
O(1)-C(15)-C(16)-C(17)	0.3(3)
Ni(1)-C(15)-C(16)-C(17)	-178.4(2)
C(15)-C(16)-C(17)-C(18)	-0.3(4)

C(16)-C(17)-C(18)-O(1)	0.1(4)
C(17)-C(18)-O(1)-C(15)	0.1(4)
C(16)-C(15)-O(1)-C(18)	-0.3(4)
Ni(1)-C(15)-O(1)-C(18)	178.6(2)
C(1)-C(2)-P(1)-C(6)	-158.0(2)
C(1)-C(2)-P(1)-C(3)	94.1(2)
C(1)-C(2)-P(1)-Ni(1)	-27.8(2)
C(7)-C(6)-P(1)-C(2)	84.2(2)
C(8)-C(6)-P(1)-C(2)	-41.6(2)
C(7)-C(6)-P(1)-C(3)	-168.4(2)
C(8)-C(6)-P(1)-C(3)	65.8(2)
C(7)-C(6)-P(1)-Ni(1)	-37.9(3)
C(8)-C(6)-P(1)-Ni(1)	-163.70(17)
C(5)-C(3)-P(1)-C(2)	174.8(2)
C(4)-C(3)-P(1)-C(2)	-60.6(2)
C(5)-C(3)-P(1)-C(6)	67.3(2)
C(4)-C(3)-P(1)-C(6)	-168.1(2)
C(5)-C(3)-P(1)-Ni(1)	-67.2(2)
C(4)-C(3)-P(1)-Ni(1)	57.5(2)
C(2)-C(1)-P(2)-C(9)	94.1(2)
C(2)-C(1)-P(2)-C(12)	-155.4(2)
C(2)-C(1)-P(2)-Ni(1)	-27.5(2)
C(11)-C(9)-P(2)-C(1)	165.7(2)
C(10)-C(9)-P(2)-C(1)	-70.2(2)
C(11)-C(9)-P(2)-C(12)	55.0(3)
C(10)-C(9)-P(2)-C(12)	179.1(2)
C(11)-C(9)-P(2)-Ni(1)	-74.5(2)
C(10)-C(9)-P(2)-Ni(1)	49.6(2)
C(14)-C(12)-P(2)-C(1)	-52.5(2)
C(13)-C(12)-P(2)-C(1)	73.9(2)
C(14)-C(12)-P(2)-C(9)	57.9(2)
C(13)-C(12)-P(2)-C(9)	-175.7(2)
C(14)-C(12)-P(2)-Ni(1)	-175.56(18)
C(13)-C(12)-P(2)-Ni(1)	-49.2(2)

Table S6. Hydrogen bonds for 7 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(6)-H(6)O(1)	1.00	2.53	3.080(4)	114.3
C(2)-H(2A)N(1)#1	0.99	2.69	3.580(4)	149.8
C(2)-H(2A)N(1)#1	0.99	2.69	3.580(4)	149.8
C(6)-H(6)O(1)	1.00	2.53	3.080(4)	114.3

Symmetry transformations used to generate equivalent atoms:

#1 -x+1/2,y+1/2,-z+3/2

Cristalographic data for complex (11).

Identification code	11	
Empirical formula	C19 H35 N Ni O P2	
Formula weight	414.13	
Temperature	130(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/n	
Unit cell dimensions	a = 15.6451(9) Å	<i>α</i> = 90°.
	b = 14.6989(13) Å	β= 103.432(6)°.
	c = 19.3297(15) Å	$\gamma = 90^{\circ}.$
Volume	4323.6(6) Å ³	
Ζ	8	
Density (calculated)	1.272 Mg/m ³	
Absorption coefficient	1.051 mm ⁻¹	
F(000)	1776	
Crystal size	0.450 x 0.280 x 0.100 mm ³	
Theta range for data collection	3.519 to 29.434°.	
Index ranges	-19<=h<=17, -14<=k<=19, -	
	17<=l<=26	
Reflections collected	18841	
Independent reflections	9914 [R(int) = 0.0401]	
Completeness to theta = 25.242°	99.7 %	

 Table S7. Crystal data and structure refinement for complex (11).

Refinement method	Full-matrix least-squares on	
	F ²	
Data / restraints / parameters	9914 / 0 / 449	
Goodness-of-fit on F ²	1.089	
Final R indices [I>2sigma(I)]	R1 = 0.0591, wR2 = 0.1437	
R indices (all data)	R1 = 0.1064, wR2 = 0.1738	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.053 and -0.788 e.Å ⁻³	

Table S8. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **11**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	у	Z	U(eq)
C(1)	8825(3)	4758(3)	3182(2)	27(1)
C(2)	8742(3)	4734(3)	2375(2)	24(1)
C(3)	6915(3)	4818(3)	1573(2)	27(1)
C(4)	6581(3)	5220(4)	2189(3)	42(1)
C(5)	6154(3)	4417(4)	1011(3)	38(1)
C(6)	8175(3)	3640(3)	1112(2)	25(1)
C(7)	8846(3)	2872(3)	1289(3)	34(1)
C(8)	8526(3)	4428(4)	740(2)	36(1)
C(9)	8108(3)	3954(3)	4313(2)	29(1)
C(10)	7209(3)	4430(4)	4099(3)	41(1)
C(11)	8778(3)	4512(4)	4851(2)	38(1)
C(12)	9540(3)	3041(3)	3852(2)	26(1)
C(13)	9922(3)	2721(4)	3238(2)	34(1)
C(14)	9428(3)	2242(3)	4332(2)	34(1)
C(15)	6639(3)	2417(3)	1910(2)	26(1)
C(16)	5735(3)	2323(3)	1964(3)	32(1)
C(17)	5272(3)	1941(4)	1364(3)	36(1)
C(18)	6628(3)	2063(3)	1271(2)	32(1)
C(19)	7226(3)	2209(3)	3326(2)	28(1)
N(1)	7007(3)	1776(3)	3756(2)	37(1)
Ni(1)	7536(1)	2990(1)	2652(1)	22(1)
P(2)	8495(1)	3663(1)	3508(1)	23(1)

P(1)	7818(1)	4004(1)	1914(1)	21(1)
O (1)	5799(2)	1756(2)	910(2)	37(1)
C(20)	6331(3)	6402(3)	7748(2)	26(1)
C(21)	6295(3)	6457(3)	6938(2)	31(1)
C(22)	7128(3)	5694(3)	5855(2)	29(1)
C(23)	7986(3)	6227(4)	6093(3)	38(1)
C(24)	6482(4)	6186(4)	5258(3)	41(1)
C(25)	5645(3)	4759(3)	6218(2)	32(1)
C(26)	5835(3)	3933(4)	5785(3)	38(1)
C(27)	5175(3)	4466(4)	6786(3)	47(1)
C(28)	8141(3)	6513(3)	8582(2)	28(1)
C(29)	8538(3)	6875(4)	7980(3)	42(1)
C(30)	8855(3)	6128(4)	9198(3)	39(1)
C(31)	6899(3)	5276(3)	9002(2)	27(1)
C(32)	6569(3)	6038(4)	9415(2)	37(1)
C(33)	6216(3)	4516(3)	8793(3)	36(1)
C(34)	8454(3)	4095(3)	8226(2)	26(1)
C(35)	9366(3)	3994(3)	8198(3)	33(1)
C(36)	9786(3)	3546(4)	8786(3)	38(1)
C(37)	8410(3)	3672(3)	8826(2)	31(1)
C(38)	7923(3)	3937(3)	6809(2)	28(1)
N(2)	8134(3)	3498(3)	6373(2)	36(1)
Ni(2)	7586(1)	4698(1)	7481(1)	22(1)
P(3)	6667(1)	5387(1)	6620(1)	24(1)
P(4)	7259(1)	5688(1)	8218(1)	22(1)
O(2)	9216(2)	3319(2)	9195(2)	39(1)

 Table S9.
 Bond lengths [Å] and angles [°] for 11.

C(1)-C(2)	1.534(6)
C(1)-P(2)	1.846(5)
C(1)-H(1A)	0.9900
C(1)-H(1B)	0.9900
C(2)-P(1)	1.854(4)
С(2)-Н(2А)	0.9900
C(2)-H(2B)	0.9900

C(3)-C(4)	1.526(6)
C(3)-C(5)	1.531(6)
C(3)-P(1)	1.852(4)
C(3)-H(3)	1.0000
C(4)-H(4A)	0.9800
C(4)-H(4B)	0.9800
C(4)-H(4C)	0.9800
C(5)-H(5A)	0.9800
C(5)-H(5B)	0.9800
C(5)-H(5C)	0.9800
C(6)-C(7)	1.525(6)
C(6)-C(8)	1.532(6)
C(6)-P(1)	1.844(4)
C(6)-H(6)	1.0000
C(7)-H(7A)	0.9800
C(7)-H(7B)	0.9800
C(7)-H(7C)	0.9800
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(8)-H(8C)	0.9800
C(9)-C(11)	1.532(6)
C(9)-C(10)	1.539(6)
C(9)-P(2)	1.846(4)
C(9)-H(9)	1.0000
C(10)-H(10A)	0.9800
C(10)-H(10B)	0.9800
C(10)-H(10C)	0.9800
C(11)-H(11A)	0.9800
C(11)-H(11B)	0.9800
C(11)-H(11C)	0.9800
C(12)-C(13)	1.522(6)
C(12)-C(14)	1.533(6)
C(12)-P(2)	1.856(4)
C(12)-H(12)	1.0000
C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800

C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800
C(15)-C(18)	1.335(6)
C(15)-C(16)	1.449(6)
C(15)-Ni(1)	1.951(4)
C(16)-C(17)	1.341(7)
C(16)-H(16)	0.9500
C(17)-O(1)	1.363(6)
C(17)-H(17)	0.9500
C(18)-O(1)	1.397(5)
C(18)-H(18)	0.9500
C(19)-N(1)	1.160(6)
C(19)-Ni(1)	1.883(5)
Ni(1)-P(1)	2.1788(12)
Ni(1)-P(2)	2.1930(12)
C(20)-C(21)	1.558(6)
C(20)-P(4)	1.849(4)
C(20)-H(20A)	0.9900
C(20)-H(20B)	0.9900
C(21)-P(3)	1.831(5)
C(21)-H(21A)	0.9900
C(21)-H(21B)	0.9900
C(22)-C(24)	1.529(6)
C(22)-C(23)	1.530(7)
C(22)-P(3)	1.844(5)
C(22)-H(22)	1.0000
C(23)-H(23A)	0.9800
C(23)-H(23B)	0.9800
C(23)-H(23C)	0.9800
C(24)-H(24A)	0.9800
C(24)-H(24B)	0.9800
C(24)-H(24C)	0.9800
C(25)-C(27)	1.519(7)
C(25)-C(26)	1.541(7)
C(25)-P(3)	1.854(4)
C(25)-H(25)	1.0000

C(26)-H(26A)	0.9800
C(26)-H(26B)	0.9800
C(26)-H(26C)	0.9800
C(27)-H(27A)	0.9800
C(27)-H(27B)	0.9800
C(27)-H(27C)	0.9800
C(28)-C(29)	1.535(6)
C(28)-C(30)	1.538(6)
C(28)-P(4)	1.850(4)
C(28)-H(28)	1.0000
C(29)-H(29A)	0.9800
C(29)-H(29B)	0.9800
C(29)-H(29C)	0.9800
C(30)-H(30A)	0.9800
C(30)-H(30B)	0.9800
C(30)-H(30C)	0.9800
C(31)-C(33)	1.533(6)
C(31)-C(32)	1.533(6)
C(31)-P(4)	1.837(4)
C(31)-H(31)	1.0000
C(32)-H(32A)	0.9800
C(32)-H(32B)	0.9800
C(32)-H(32C)	0.9800
C(33)-H(33A)	0.9800
C(33)-H(33B)	0.9800
C(33)-H(33C)	0.9800
C(34)-C(37)	1.331(6)
C(34)-C(35)	1.446(6)
C(34)-Ni(2)	1.948(4)
C(35)-C(36)	1.345(7)
C(35)-H(35)	0.9500
C(36)-O(2)	1.363(6)
C(36)-H(36)	0.9500
C(37)-O(2)	1.397(5)
C(37)-H(37)	0.9500
C(38)-N(2)	1.169(6)
C(38)-Ni(2)	1.880(5)

Ni(2)-P(4)	2.1793(12)
Ni(2)-P(3)	2.1801(12)
C(2)-C(1)-P(2)	111.3(3)
C(2)-C(1)-H(1A)	109.4
P(2)-C(1)-H(1A)	109.4
C(2)-C(1)-H(1B)	109.4
P(2)-C(1)-H(1B)	109.4
H(1A)-C(1)-H(1B)	108.0
C(1)-C(2)-P(1)	112.0(3)
C(1)-C(2)-H(2A)	109.2
P(1)-C(2)-H(2A)	109.2
C(1)-C(2)-H(2B)	109.2
P(1)-C(2)-H(2B)	109.2
H(2A)-C(2)-H(2B)	107.9
C(4)-C(3)-C(5)	110.6(4)
C(4)-C(3)-P(1)	110.1(3)
C(5)-C(3)-P(1)	114.0(3)
C(4)-C(3)-H(3)	107.3
C(5)-C(3)-H(3)	107.3
P(1)-C(3)-H(3)	107.3
C(3)-C(4)-H(4A)	109.5
C(3)-C(4)-H(4B)	109.5
H(4A)-C(4)-H(4B)	109.5
C(3)-C(4)-H(4C)	109.5
H(4A)-C(4)-H(4C)	109.5
H(4B)-C(4)-H(4C)	109.5
C(3)-C(5)-H(5A)	109.5
C(3)-C(5)-H(5B)	109.5
H(5A)-C(5)-H(5B)	109.5
C(3)-C(5)-H(5C)	109.5
H(5A)-C(5)-H(5C)	109.5
H(5B)-C(5)-H(5C)	109.5
C(7)-C(6)-C(8)	111.2(4)
C(7)-C(6)-P(1)	110.7(3)
C(8)-C(6)-P(1)	112.8(3)
C(7)-C(6)-H(6)	107.3

C(8)-C(6)-H(6)	107.3
P(1)-C(6)-H(6)	107.3
C(6)-C(7)-H(7A)	109.5
C(6)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
C(6)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
C(6)-C(8)-H(8A)	109.5
C(6)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
C(6)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
C(11)-C(9)-C(10)	112.2(4)
C(11)-C(9)-P(2)	112.9(3)
C(10)-C(9)-P(2)	109.8(3)
C(11)-C(9)-H(9)	107.2
C(10)-C(9)-H(9)	107.2
P(2)-C(9)-H(9)	107.2
С(9)-С(10)-Н(10А)	109.5
C(9)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
С(9)-С(10)-Н(10С)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(9)-C(11)-H(11A)	109.5
C(9)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
C(9)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
C(13)-C(12)-C(14)	110.8(4)
C(13)-C(12)-P(2)	110.2(3)
C(14)-C(12)-P(2)	112.3(3)
C(13)-C(12)-H(12)	107.8
C(14)-C(12)-H(12)	107.8

P(2)-C(12)-H(12)	107.8
C(12)-C(13)-H(13A)	109.5
C(12)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(12)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(12)-C(14)-H(14A)	109.5
C(12)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
C(12)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
C(18)-C(15)-C(16)	103.1(4)
C(18)-C(15)-Ni(1)	134.5(3)
C(16)-C(15)-Ni(1)	122.3(3)
C(17)-C(16)-C(15)	108.5(4)
C(17)-C(16)-H(16)	125.8
C(15)-C(16)-H(16)	125.8
C(16)-C(17)-O(1)	110.7(4)
C(16)-C(17)-H(17)	124.6
O(1)-C(17)-H(17)	124.6
C(15)-C(18)-O(1)	113.5(4)
C(15)-C(18)-H(18)	123.2
O(1)-C(18)-H(18)	123.2
N(1)-C(19)-Ni(1)	175.5(4)
C(19)-Ni(1)-C(15)	89.32(18)
C(19)-Ni(1)-P(1)	174.00(14)
C(15)-Ni(1)-P(1)	91.95(13)
C(19)-Ni(1)-P(2)	89.68(13)
C(15)-Ni(1)-P(2)	177.25(14)
P(1)-Ni(1)-P(2)	88.79(4)
C(9)-P(2)-C(1)	104.9(2)
C(9)-P(2)-C(12)	104.3(2)
C(1)-P(2)-C(12)	105.0(2)
C(9)-P(2)-Ni(1)	116.07(15)
C(1)-P(2)-Ni(1)	109.41(14)

C(12)-P(2)-Ni(1)	116.07(15)
C(6)-P(1)-C(3)	104.11(19)
C(6)-P(1)-C(2)	102.59(19)
C(3)-P(1)-C(2)	104.0(2)
C(6)-P(1)-Ni(1)	119.92(15)
C(3)-P(1)-Ni(1)	114.94(15)
C(2)-P(1)-Ni(1)	109.52(14)
C(17)-O(1)-C(18)	104.2(4)
C(21)-C(20)-P(4)	111.3(3)
C(21)-C(20)-H(20A)	109.4
P(4)-C(20)-H(20A)	109.4
C(21)-C(20)-H(20B)	109.4
P(4)-C(20)-H(20B)	109.4
H(20A)-C(20)-H(20B)	108.0
C(20)-C(21)-P(3)	110.7(3)
C(20)-C(21)-H(21A)	109.5
P(3)-C(21)-H(21A)	109.5
C(20)-C(21)-H(21B)	109.5
P(3)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	108.1
C(24)-C(22)-C(23)	111.4(4)
C(24)-C(22)-P(3)	114.1(3)
C(23)-C(22)-P(3)	111.3(3)
C(24)-C(22)-H(22)	106.5
C(23)-C(22)-H(22)	106.5
P(3)-C(22)-H(22)	106.5
C(22)-C(23)-H(23A)	109.5
C(22)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5
C(22)-C(23)-H(23C)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5
C(22)-C(24)-H(24A)	109.5
C(22)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5
C(22)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5

H(24B)-C(24)-H(24C)	109.5
C(27)-C(25)-C(26)	110.9(4)
C(27)-C(25)-P(3)	110.7(3)
C(26)-C(25)-P(3)	111.3(3)
C(27)-C(25)-H(25)	107.9
C(26)-C(25)-H(25)	107.9
P(3)-C(25)-H(25)	107.9
C(25)-C(26)-H(26A)	109.5
C(25)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26B)	109.5
C(25)-C(26)-H(26C)	109.5
H(26A)-C(26)-H(26C)	109.5
H(26B)-C(26)-H(26C)	109.5
C(25)-C(27)-H(27A)	109.5
C(25)-C(27)-H(27B)	109.5
H(27A)-C(27)-H(27B)	109.5
C(25)-C(27)-H(27C)	109.5
H(27A)-C(27)-H(27C)	109.5
H(27B)-C(27)-H(27C)	109.5
C(29)-C(28)-C(30)	111.4(4)
C(29)-C(28)-P(4)	109.7(3)
C(30)-C(28)-P(4)	113.3(3)
C(29)-C(28)-H(28)	107.4
C(30)-C(28)-H(28)	107.4
P(4)-C(28)-H(28)	107.4
C(28)-C(29)-H(29A)	109.5
C(28)-C(29)-H(29B)	109.5
H(29A)-C(29)-H(29B)	109.5
C(28)-C(29)-H(29C)	109.5
H(29A)-C(29)-H(29C)	109.5
H(29B)-C(29)-H(29C)	109.5
C(28)-C(30)-H(30A)	109.5
C(28)-C(30)-H(30B)	109.5
H(30A)-C(30)-H(30B)	109.5
C(28)-C(30)-H(30C)	109.5
H(30A)-C(30)-H(30C)	109.5
H(30B)-C(30)-H(30C)	109.5

C(33)-C(31)-C(32)	111.8(4)
C(33)-C(31)-P(4)	110.6(3)
C(32)-C(31)-P(4)	113.1(3)
C(33)-C(31)-H(31)	107.0
C(32)-C(31)-H(31)	107.0
P(4)-C(31)-H(31)	107.0
C(31)-C(32)-H(32A)	109.5
C(31)-C(32)-H(32B)	109.5
H(32A)-C(32)-H(32B)	109.5
C(31)-C(32)-H(32C)	109.5
H(32A)-C(32)-H(32C)	109.5
H(32B)-C(32)-H(32C)	109.5
C(31)-C(33)-H(33A)	109.5
C(31)-C(33)-H(33B)	109.5
H(33A)-C(33)-H(33B)	109.5
C(31)-C(33)-H(33C)	109.5
H(33A)-C(33)-H(33C)	109.5
H(33B)-C(33)-H(33C)	109.5
C(37)-C(34)-C(35)	103.6(4)
C(37)-C(34)-Ni(2)	133.4(3)
C(35)-C(34)-Ni(2)	122.9(3)
C(36)-C(35)-C(34)	108.1(4)
C(36)-C(35)-H(35)	125.9
C(34)-C(35)-H(35)	125.9
C(35)-C(36)-O(2)	110.7(4)
C(35)-C(36)-H(36)	124.7
O(2)-C(36)-H(36)	124.7
C(34)-C(37)-O(2)	113.3(4)
C(34)-C(37)-H(37)	123.3
O(2)-C(37)-H(37)	123.3
N(2)-C(38)-Ni(2)	176.9(4)
C(38)-Ni(2)-C(34)	88.85(18)
C(38)-Ni(2)-P(4)	174.41(15)
C(34)-Ni(2)-P(4)	92.90(13)
C(38)-Ni(2)-P(3)	89.42(13)
C(34)-Ni(2)-P(3)	177.08(14)
P(4)-Ni(2)-P(3)	88.60(5)

C(21)-P(3)-C(22)	105.8(2)
C(21)-P(3)-C(25)	104.9(2)
C(22)-P(3)-C(25)	104.2(2)
C(21)-P(3)-Ni(2)	110.31(15)
C(22)-P(3)-Ni(2)	114.49(15)
C(25)-P(3)-Ni(2)	116.12(16)
C(31)-P(4)-C(20)	103.7(2)
C(31)-P(4)-C(28)	104.3(2)
C(20)-P(4)-C(28)	104.3(2)
C(31)-P(4)-Ni(2)	118.82(16)
C(20)-P(4)-Ni(2)	109.56(14)
C(28)-P(4)-Ni(2)	114.73(15)
C(36)-O(2)-C(37)	104.2(4)

Table S10. Anisotropic displacement parameters (Å²x 10³)for **11**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C (1)	28(2)	24(2)	28(2)	-4(2)	4(2)	-2(2)
C(2)	22(2)	21(2)	29(2)	2(2)	5(2)	-5(2)
C(3)	24(2)	31(3)	28(2)	6(2)	9(2)	6(2)
C(4)	39(3)	48(3)	42(3)	6(3)	16(2)	22(3)
C(5)	25(2)	40(3)	44(3)	12(2)	1(2)	4(2)
C(6)	21(2)	30(2)	25(2)	-6(2)	6(2)	-2(2)
C (7)	29(2)	40(3)	35(2)	-12(2)	10(2)	5(2)
C(8)	36(3)	49(3)	25(2)	-1(2)	12(2)	0(2)
C(9)	31(2)	33(3)	25(2)	-2(2)	12(2)	1(2)
C(10)	38(3)	54(3)	35(3)	-5(2)	16(2)	8(3)
C (11)	47(3)	40(3)	28(2)	-4(2)	10(2)	0(2)
C(12)	23(2)	27(2)	26(2)	2(2)	5(2)	0(2)
C(13)	26(2)	40(3)	37(3)	8(2)	11(2)	7(2)
C(14)	35(2)	33(3)	33(2)	4(2)	7(2)	8(2)
C(15)	21(2)	25(2)	30(2)	0(2)	2(2)	-5(2)
C(16)	28(2)	30(3)	36(2)	3(2)	4(2)	-3(2)
C(17)	25(2)	38(3)	44(3)	6(2)	3(2)	-3(2)

C(18)	26(2)	35(3)	32(2)	1(2)	4(2)	-3(2)
C(19)	18(2)	35(3)	28(2)	-9(2)	3(2)	-5(2)
N(1)	37(2)	39(2)	36(2)	6(2)	9(2)	-5(2)
Ni(1)	20(1)	24(1)	24(1)	0(1)	6(1)	0(1)
P(2)	23(1)	25(1)	21(1)	-1(1)	7(1)	0(1)
P(1)	19(1)	24(1)	21(1)	0(1)	6(1)	2(1)
O (1)	37(2)	34(2)	34(2)	-1(2)	-3(1)	-8(2)
C(20)	19(2)	25(2)	31(2)	-1(2)	3(2)	5(2)
C(21)	28(2)	35(3)	29(2)	3(2)	5(2)	4(2)
C(22)	36(2)	27(2)	25(2)	2(2)	7(2)	8(2)
C(23)	42(3)	44(3)	32(2)	-2(2)	17(2)	-4(2)
C(24)	51(3)	41(3)	31(2)	8(2)	8(2)	10(3)
C(25)	24(2)	36(3)	32(2)	-3(2)	-2(2)	-2(2)
C(26)	34(3)	38(3)	39(3)	-7(2)	2(2)	-2(2)
C(27)	30(3)	61(4)	52(3)	-20(3)	15(2)	-22(3)
C(28)	22(2)	31(3)	30(2)	-6(2)	5(2)	-8(2)
C(29)	34(3)	53(3)	41(3)	-5(3)	18(2)	-20(2)
C(30)	32(2)	35(3)	41(3)	-5(2)	-5(2)	-4(2)
C(31)	25(2)	32(2)	25(2)	2(2)	9(2)	-3(2)
C(32)	42(3)	43(3)	30(2)	-2(2)	16(2)	0(2)
C(33)	37(3)	38(3)	36(3)	0(2)	15(2)	-12(2)
C(34)	19(2)	29(2)	28(2)	-5(2)	3(2)	2(2)
C(35)	25(2)	35(3)	39(3)	0(2)	8(2)	-1(2)
C(36)	29(2)	39(3)	42(3)	-6(2)	-2(2)	2(2)
C(37)	33(2)	31(3)	28(2)	-3(2)	5(2)	7(2)
C(38)	20(2)	38(3)	26(2)	6(2)	2(2)	2(2)
N(2)	39(2)	37(2)	34(2)	-1(2)	14(2)	5(2)
Ni(2)	21(1)	25(1)	22(1)	0(1)	5(1)	1(1)
P(3)	23(1)	28(1)	22(1)	0(1)	5(1)	1(1)
P(4)	18(1)	24(1)	22(1)	-1(1)	5(1)	-2(1)
O(2)	41(2)	43(2)	30(2)	-1(2)	1(1)	8(2)

Table S11Torsion angles [°] for 11.

P(2)-C(1)-C(2)-P(1)	32.9(4)
C(18)-C(15)-C(16)-C(17)	-0.7(5)

Ni(1)-C(15)-C(16)-C(17)	177.4(3)
C(15)-C(16)-C(17)-O(1)	0.8(6)
C(16)-C(15)-C(18)-O(1)	0.4(5)
Ni(1)-C(15)-C(18)-O(1)	-177.4(3)
C(11)-C(9)-P(2)-C(1)	-52.9(4)
C(10)-C(9)-P(2)-C(1)	73.1(4)
C(11)-C(9)-P(2)-C(12)	57.2(4)
C(10)-C(9)-P(2)-C(12)	-176.8(3)
C(11)-C(9)-P(2)-Ni(1)	-173.8(3)
C(10)-C(9)-P(2)-Ni(1)	-47.8(4)
C(2)-C(1)-P(2)-C(9)	-152.8(3)
C(2)-C(1)-P(2)-C(12)	97.6(3)
C(2)-C(1)-P(2)-Ni(1)	-27.6(3)
C(13)-C(12)-P(2)-C(9)	177.7(3)
C(14)-C(12)-P(2)-C(9)	53.6(4)
C(13)-C(12)-P(2)-C(1)	-72.2(4)
C(14)-C(12)-P(2)-C(1)	163.7(3)
C(13)-C(12)-P(2)-Ni(1)	48.7(4)
C(14)-C(12)-P(2)-Ni(1)	-75.4(3)
C(7)-C(6)-P(1)-C(3)	-172.9(3)
C(8)-C(6)-P(1)-C(3)	61.8(3)
C(7)-C(6)-P(1)-C(2)	78.9(3)
C(8)-C(6)-P(1)-C(2)	-46.4(3)
C(7)-C(6)-P(1)-Ni(1)	-42.6(3)
C(8)-C(6)-P(1)-Ni(1)	-168.0(3)
C(4)-C(3)-P(1)-C(6)	-177.0(3)
C(5)-C(3)-P(1)-C(6)	58.0(4)
C(4)-C(3)-P(1)-C(2)	-69.9(4)
C(5)-C(3)-P(1)-C(2)	165.1(3)
C(4)-C(3)-P(1)-Ni(1)	49.8(4)
C(5)-C(3)-P(1)-Ni(1)	-75.1(3)
C(1)-C(2)-P(1)-C(6)	-153.2(3)
C(1)-C(2)-P(1)-C(3)	98.5(3)
C(1)-C(2)-P(1)-Ni(1)	-24.8(3)
C(16)-C(17)-O(1)-C(18)	-0.6(5)
C(15)-C(18)-O(1)-C(17)	0.1(5)
P(4)-C(20)-C(21)-P(3)	33.7(4)

C(37)-C(34)-C(35)-C(36)	-1.5(5)
Ni(2)-C(34)-C(35)-C(36)	-179.6(3)
C(34)-C(35)-C(36)-O(2)	1.5(6)
C(35)-C(34)-C(37)-O(2)	0.9(5)
Ni(2)-C(34)-C(37)-O(2)	178.8(3)
C(20)-C(21)-P(3)-C(22)	-151.8(3)
C(20)-C(21)-P(3)-C(25)	98.3(3)
C(20)-C(21)-P(3)-Ni(2)	-27.5(3)
C(24)-C(22)-P(3)-C(21)	-57.6(4)
C(23)-C(22)-P(3)-C(21)	69.5(4)
C(24)-C(22)-P(3)-C(25)	52.7(4)
C(23)-C(22)-P(3)-C(25)	179.8(3)
C(24)-C(22)-P(3)-Ni(2)	-179.4(3)
C(23)-C(22)-P(3)-Ni(2)	-52.3(4)
C(27)-C(25)-P(3)-C(21)	-68.2(4)
C(26)-C(25)-P(3)-C(21)	168.0(3)
C(27)-C(25)-P(3)-C(22)	-179.2(4)
C(26)-C(25)-P(3)-C(22)	57.0(4)
C(27)-C(25)-P(3)-Ni(2)	53.9(4)
C(26)-C(25)-P(3)-Ni(2)	-69.9(4)
C(33)-C(31)-P(4)-C(20)	76.0(4)
C(32)-C(31)-P(4)-C(20)	-50.2(4)
C(33)-C(31)-P(4)-C(28)	-175.1(3)
C(32)-C(31)-P(4)-C(28)	58.7(4)
C(33)-C(31)-P(4)-Ni(2)	-45.8(4)
C(32)-C(31)-P(4)-Ni(2)	-172.0(3)
C(21)-C(20)-P(4)-C(31)	-154.2(3)
C(21)-C(20)-P(4)-C(28)	96.9(3)
C(21)-C(20)-P(4)-Ni(2)	-26.4(3)
C(29)-C(28)-P(4)-C(31)	176.9(3)
C(30)-C(28)-P(4)-C(31)	51.7(4)
C(29)-C(28)-P(4)-C(20)	-74.6(4)
C(30)-C(28)-P(4)-C(20)	160.1(3)
C(29)-C(28)-P(4)-Ni(2)	45.2(4)
C(30)-C(28)-P(4)-Ni(2)	-80.0(3)
C(35)-C(36)-O(2)-C(37)	-0.9(5)
C(34)-C(37)-O(2)-C(36)	-0.1(5)

Table S12. Hydrogen bonds for 11 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(3)-H(3)N(1)#1	1.00	2.52	3.467(6)	158.6
C(17)-H(17)N(2)#2	0.95	2.48	3.410(6)	164.5
C(20)-H(20B)N(2)#3	0.99	2.55	3.525(6)	168.1
C(24)-H(24B)O(2)#3	0.98	2.58	3.561(7)	175.5
C(28)-H(28)N(2)#3	1.00	2.63	3.547(6)	152.9
C(36)-H(36)N(1)#4	0.95	2.61	3.522(6)	159.8

Symmetry transformations used to generate equivalent atoms:

#1 -x+3/2,y+1/2,-z+1/2 #2 x-1/2,-y+1/2,z-1/2

#3 -x+3/2,y+1/2,-z+3/2 #4 x+1/2,-y+1/2,z+1/2