Supporting Information

Tb-MOF: A Naked-eye and Regenerable Fluorescent Probe for Selective and Quantitative Detection of Fe³⁺ and Al³⁺ Ions

Mengfei Zhang, ^{‡a} Jing Han, ^{‡a} Haipeng Wu,^a Qing Wei,^{*a} Gang Xie,^a Sanping Chen,^{*a} Shengli Gao^a

^a Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China

^{*‡*} These authors contributed equally to this work.

Corresponding author Prof. Sanping Chen Tel.: +86-029-81535026 Fax: +86-029-81535026 E-mail: sanpingchen@126.com

Content of Table

Fig. S1 FT-IR spectra of compound 1.

Fig. S2 The coordinated modes of TCA³⁻ ligand in compound 1.

Fig. S3 Powder X-ray diffraction (PXRD) of simulated from the single-crystal data of 1 (black), as-synthesized compound 1 (blue), $1+Fe^{3+}$ (red) and $1+Al^{3+}$ (yellow).

Fig. S4 Typical DSC and TG curves of compound 1.

Fig. S5 The UV/vis absorption spectra of the free ligand H₃TCA and its corresponding compounds Tb-MOF were recorded in DMSO solution ($c = 1 \times 10^{-5}$ M).

Fig. S6 Solid-state excitation (purple line) and emission (blue line) spectra of compound 1.

Fig. S7 PXRD patterns of Tb-MOF: the simulated pattern from single crystal analysis, as-synthesized Tb-MOF and immersed in solution for 10 days.

Fig. S8 Day to day fluorescence stability of compound 1 in aqueous solution.

Fig. S9 Comparison of emission spectra of compound 1, Tb^{3+} and $H_3TCA (10^{-3} M)$ under excitation at 375 nm. Fig. S10 Optimization of the solvent.

Fig. S11 Optimization of the solvent ratio.

Fig. S12 Comparison of the luminescence intensity at 549 nm of compound 1 in 10⁻³ M different cations.

Fig. S13 Comparison of the luminescence intensity at 463 nm of compound 1 in 10⁻³ M different cations.

Fig. S14 Photographs showing the visual color change of the Fe^{3+} ions solution before (left) and after (right) adding compound 1.

Fig. S15 The visual change on the addition of various $M(NO_3)_x$ under the fluorescent lamp (left), laboratory UV light (right, $\lambda_{ex} = 375$ nm).

Fig. S16 Comparison of the luminescence intensity of $1+Fe^{3+}$ with $1+Fe^{3+}$ + different metal ions (10⁻⁴ M) at 549 nm.

Fig. S17 Comparison of the luminescence intensity of $1+Al^{3+}$ with $1+Al^{3+}$ + different metal ions (10⁻⁴ M) at 463 nm.

Fig. S18 Fluorescence responses of Tb-MOF in aqueous solutions in the presence of various concentrations of Cu^{2+}

Fig. S19 Fluorescence responses of Tb-MOF in aqueous solutions in the presence of various concentrations of Fe³⁺

Fig. S20 Low- (right) and high- magnification (left) TEM images of the products.

Fig. S21 Low- (right) and high- magnification (left) SEM images of the products.

Fig. S22 Comparison of the luminescence intensity of Tb³⁺ under Fe³⁺ (10⁻³ M).

Fig. S23 The luminescence intensity (549 nm) of one recycles (a) after the first recycle.

Fig. S24 Comparison of the luminescence intensity of H₃TCA and compound 1 under Al³⁺ (10⁻³ M).

Table S1. Crystal Data and Structure Refinement Summary for compound 1.

Table S2. Selected Bond Lengths (Å) and Bond Angles (o) for compound 1.

Fig. S1 FT-IR spectra of compound 1.

Fig. S2 The coordinated modes of TCA³⁻ ligand in compound **1**. a, $\mu_2 - \eta^1 : \eta^1$; b, $\mu_2 - \eta^2 : \eta^1$; c, $\mu_2 - \eta^2$.

Fig. S3 Powder X-ray diffraction (PXRD) of simulated from the single-crystal data of 1 (black), as-synthesized compound 1 (blue), $1+Fe^{3+}$ (red) and $1+Al^{3+}$ (yellow).

Fig. S4 Typical DSC and TG curves of compound 1.

Fig. S5 The UV/vis absorption spectra of the free ligand H₃TCA and its corresponding compounds Tb-MOF were recorded in CH₃OH solution ($c = 1 \times 10^{-5}$ M).

Fig. S6 Solid-state excitation (purple line) and emission (blue line) spectra of compound 1.

Fig. S7 PXRD patterns of Tb-MOF: the simulated pattern from single crystal analysis, as-synthesized Tb-MOF and immersed in solution for 10 days.

Fig. S8 Day to day fluorescence stability of compound 1 in aqueous solution.

Fig. S8 Comparison of emission spectra of compound 1, Tb³⁺ and H₃TCA (10⁻³ M) under excitation at 375 nm.

Fig. S10 Optimization of the solvent.

Fig. S11 Optimization of the solvent ratio.

Fig. S12 Comparison of the luminescence intensity at 549 nm of compound 1 in 10⁻³ M different cations.

Fig. S13 Comparison of the luminescence intensity at 463 nm of compound 1 in 10⁻³ M different cations.

Fig. S14 Photographs showing the visual color change of the Fe^{3+} ions solution before (left) and after (right) add compound 1 about 12h.

 $1 + Fe^{3+}$ compound $1 + Al^{3+}$

 $1 + Fe^{3+}$ compound $1 + Al^{3+}$

Fig. S16 Comparison of the luminescence intensity of 1+Fe³⁺ with different metal ions at 549 nm (10⁻⁴ M).

Fig. S17 Comparison of the luminescence intensity of 1+Al³⁺ with different metal ions at 463 nm (10⁻⁴ M).

Fig. S18 Fluorescence responses of Tb-MOF in aqueous solutions in the presence of various concentrations of Cu^{2+} .

Fig. S19 Fluorescence responses of Tb-MOF in aqueous solutions in the presence of various concentrations of Fe^{3+} .

Fig. S20 Low- (right) and high- magnification (left) TEM images of the products.

Fig. S21 Low- (right) and high- magnification (left) SEM images of the products.

Fig. S22 Comparison of the luminescence intensity of Tb^{3+} under Fe^{3+} (10⁻³ M).

Fig. S23 The luminescence intensity (549 nm) of one recycles (a) after the first recycle.

Fig. S24 Comparison of the luminescence intensity of H_3TCA and compound 1 under Al^{3+} (10⁻³ M).

Table S1. Crystal Data and Structure Refinement Summary for compound 1.				
	[Tb ₃ (TCA) ₂ (DMA) _{0.5} (OH) ₃ (H ₂ O) _{0.5}]•3H ₂ O			
Empirical formula	$C_{44}H_{38.5}N_{2.5}O_{19}Tb_3$			
Formula weight	1329.02			
Crystal system	Monoclinic			
space group	C2/c			
<i>a</i> (Å)	29.155(3)			
b (Å)	11.0593(13)			
c (Å)	31.580(5)			

a (deg)	90
β (deg)	115.607(2)
γ (deg)	90
$V(\text{\AA}^3)$	9182(2)
Ζ	8
$D_c (\mathrm{mg/m^3})$	1.923
μ (mm ⁻¹)	4.643 mm ⁻¹
<i>F</i> (000)	5095
Reflections collected/unique	24948/9386
<i>R</i> (int)	0.0592
Data / restraints / parameters	9386/42/623
Goodness-of-fit on F ²	1.01
R1 ^a [I>2sigma(I)]	0.0422
wR_2^b (all data)	0.1097

 $aR_1 = \Sigma(F_o - F_c) / \Sigma F_o. \ ^b w R_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2a}.$

Table S2. Selected Bond Lengths (Å) and Bond Angles (o) for compound 1.

Tb1-O1 ³	2.772(5)	O14 ² -Tb1-O5 ⁴	156.01(18)
Tb1-O2 ³	2.427(5)	O14 ² -Tb1-O6 ⁴	131.56(18)
Tb1-O3	2.512(5)	O14 ² -Tb1-O9 ¹	99.59(17)
Tb1-O4	2.331(6)	O15 ² -Tb1-O1 ³	131.27(16)
Tb1-O5 ⁴	2.443(6)	O15 ² -Tb1-O2 ³	128.6(2)
Tb1-O6 ⁴	2.427(6)	O15 ² -Tb1-O3	72.30(17)
Tb1-O9 ¹	2.404(5)	O15 ² -Tb1-O5 ⁴	127.27(18)
Tb1-O14 ²	2.390(5)	O15 ² -Tb1-O6 ⁴	138.94(19)
Tb1-O15 ²	2.349(5)	O15 ² -Tb1-O9 ¹	69.68(17)
Tb2-O3 ⁶	2.389(5)	O15 ² -Tb1-O14 ²	66.67(17)
Tb2-O5 ⁷	2.630(6)	O3 ⁵ -Tb2-O5 ⁷	62.15(18)
Tb2-O8	2.314(5)	O3 ⁵ -Tb2-O9 ⁸	81.14(18)
Tb2-O9	2.389(5)	O3 ⁵ -Tb2-O9	77.22(17)
Tb2-O9 ⁸	2.431(5)	O3 ⁵ -Tb2-O10	80.3(2)
Tb2-O10	2.459(6)	O3 ⁵ -Tb2-O13 ⁷	134.79(17)
Tb2-O137	2.910(6)	O3 ⁵ -Tb2-O16 ⁷	92.67(19)
Tb2-O15 ⁷	2.349(5)	O8-Tb2-O3 ⁵	128.71(19)
Tb2-O16 ⁷	2.413(6)	O8-Tb2-O5 ⁷	66.60(18)
Tb3-O1 ⁷	2.387(5)	O8-Tb2-O9	83.7(2)
Tb3-O7 ⁷	2.304(5)	O8-Tb2-O9 ⁸	133.38(19)
Tb3-O119	2.372(6)	O8-Tb2-O10	140.8(2)
Tb3-O1 ³	2.294(5)	O8-Tb2-O137	70.75(19)
Tb3-O14 ¹⁰	2.389(5)	O8-Tb2-O15 ⁷	72.45(19)
Tb3-O14	2.357(5)	O8-Tb2-O16 ⁷	78.0(2)
Tb3-O15	2.325(5)	O98-Tb2-O57	128.20(16)
O2 ³ -Tb1-O1 ³	49.70(17)	O9-Tb2-O57	69.33(17)

O2 ³ -Tb1-O3	136.63(18)	O9-Tb2-O9 ⁸	67.7(2)
O2 ³ -Tb1-O5 ⁴	76.2(2)	O98-Tb2-O10	68.33(19)
O2 ³ -Tb1-O6 ⁴	92.4(2)	O9-Tb2-O10	133.0(2)
O3-Tb1-O1 ³	149.49(17)	O98-Tb2-O137	116.28(16)
O4-Tb1-O1 ³	77.11(19)	O9-Tb2-O137	147.36(16)
O4-Tb1-O2 ³	126.3(2)	O9-Tb2-O16 ⁷	146.43(19)
O4-Tb1-O3	92.21(19)	O10-Tb2-O57	131.6(2)
O4-Tb1-O5 ⁴	127.82(19)	O10-Tb2-O137	70.14(19)
O4-Tb1-O6 ⁴	76.6(2)	O157-Tb2-O35	149.56(19)
O4-Tb1-O9 ¹	148.0(2)	O157-Tb2-O57	133.30(17)
O4-Tb1-O14 ²	70.51(18)	O15 ⁷ -Tb2-O9 ⁸	69.21(17)
O4-Tb1-O15 ²	78.6(2)	O15 ⁷ -Tb2-O9	85.10(17)
O5 ⁴ -Tb1-O1 ³	100.86(18)	O15 ⁷ -Tb2-O10	94.5(2)
O54-Tb1-O3	63.24(18)	O157-Tb2-O137	68.33(16)
O6 ⁴ -Tb1-O1 ³	73.23(18)	O167-Tb2-O57	77.60(19)
O6 ⁴ -Tb1-O3	76.53(19)	O16 ⁷ -Tb2-O9 ⁸	143.01(18)
O6 ⁴ -Tb1-O5 ⁴	54.06(18)	O167-Tb2-O10	74.7(2)
O91-Tb1-O13	127.72(16)	O167-Tb2-O137	47.47(18)
O91-Tb1-O23	74.64(16)	O17-Tb3-O1410	72.19(19)
O91-Tb1-O3	79.17(18)	O7 ⁷ -Tb3-O17	80.47(19)
O9 ¹ -Tb1-O5 ⁴	72.37(18)	O7 ⁷ -Tb3-O1 ¹⁹	78.4(2)
O91-Tb1-O64	126.10(18)	O7 ⁷ -Tb3-O14	143.03(18)
O14 ² -Tb1-O1 ³	65.59(17)	O77-Tb3-O1410	136.15(18)
O14 ² -Tb1-O2 ³	80.1(2)	O7 ⁷ -Tb3-O15	76.57(19)
O14 ² -Tb1-O3	137.72(18)		