Tb-MOF: A Naked-eye and Regenerable Fluorescent Probe for Selective and Quantitative Detection of Fe^{3+} and Al^{3+} Ions

Mengfei Zhang, ${ }^{\text {ta }}$ Jing Han, ${ }^{\text {ta }}$ Haipeng Wu, ${ }^{\text {a }}$ Qing Wei,*a Gang Xie, ${ }^{\text {a }}$ Sanping Chen,*a Shengli Gao ${ }^{\text {a }}$
${ }^{a}$ Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China

$\$$ These authors contributed equally to this work.

Corresponding author
Prof. Sanping Chen
Tel.: +86-029-81535026
Fax: +86-029-81535026
E-mail: sanpingchen@126.com

Content of Table

Fig. S1 FT-IR spectra of compound 1.
Fig. S2 The coordinated modes of TCA ${ }^{3-}$ ligand in compound 1.
Fig. S3 Powder X-ray diffraction (PXRD) of simulated from the single-crystal data of $\mathbf{1}$ (black), as-synthesized compound $\mathbf{1}$ (blue), $\mathbf{1}+\mathrm{Fe}^{3+}$ (red) and $\mathbf{1}+\mathrm{Al}^{3+}$ (yellow).
Fig. S4 Typical DSC and TG curves of compound 1.
Fig. S5 The UV/vis absorption spectra of the free ligand H_{3} TCA and its corresponding compounds Tb-MOF were recorded in DMSO solution $\left(c=1 \times 10^{-5} \mathrm{M}\right)$.

Fig. S6 Solid-state excitation (purple line) and emission (blue line) spectra of compound 1.
Fig. S7 PXRD patterns of Tb-MOF: the simulated pattern from single crystal analysis, as-synthesized Tb-MOF and immersed in solution for 10 days.

Fig. S8 Day to day fluorescence stability of compound $\mathbf{1}$ in aqueous solution.
Fig. S9 Comparison of emission spectra of compound $\mathbf{1}, \mathrm{Tb}^{3+}$ and $\mathrm{H}_{3} \mathrm{TCA}\left(10^{-3} \mathrm{M}\right)$ under excitation at 375 nm .
Fig. S10 Optimization of the solvent.
Fig. S11 Optimization of the solvent ratio.
Fig. S12 Comparison of the luminescence intensity at 549 nm of compound $\mathbf{1}$ in $10^{-3} \mathrm{M}$ different cations.
Fig. S13 Comparison of the luminescence intensity at 463 nm of compound $\mathbf{1}$ in $10^{-3} \mathrm{M}$ different cations.
Fig. S14 Photographs showing the visual color change of the Fe^{3+} ions solution before (left) and after (right) adding compound 1.

Fig. S15 The visual change on the addition of various $\mathrm{M}\left(\mathrm{NO}_{3}\right)_{\mathrm{x}}$ under the fluorescent lamp (left), laboratory UV light (right, $\lambda_{\mathrm{ex}}=375 \mathrm{~nm}$).
Fig. S16 Comparison of the luminescence intensity of $\mathbf{1}+\mathrm{Fe}^{3+}$ with $\mathbf{1}+\mathrm{Fe}^{3+}+$ different metal ions $\left(10^{-4} \mathrm{M}\right)$ at 549 nm.

Fig. S17 Comparison of the luminescence intensity of $\mathbf{1}+\mathrm{Al}^{3+}$ with $\mathbf{1}+\mathrm{Al}^{3+}+$ different metal ions $\left(10^{-4} \mathrm{M}\right)$ at 463 nm.

Fig. S18 Fluorescence responses of Tb-MOF in aqueous solutions in the presence of various concentrations of
Cu^{2+}
Fig. S19 Fluorescence responses of Tb-MOF in aqueous solutions in the presence of various concentrations of Fe^{3+}
Fig. S20 Low- (right) and high- magnification (left) TEM images of the products.
Fig. S21 Low- (right) and high- magnification (left) SEM images of the products.
Fig. S22 Comparison of the luminescence intensity of Tb^{3+} under $\mathrm{Fe}^{3+}\left(10^{-3} \mathrm{M}\right)$.
Fig. S23 The luminescence intensity (549 nm) of one recycles (a) after the first recycle.
Fig. S24 Comparison of the luminescence intensity of $\mathrm{H}_{3} \mathrm{TCA}$ and compound $\mathbf{1}$ under $\mathrm{Al}^{3+}\left(10^{-3} \mathrm{M}\right)$.
Table S1. Crystal Data and Structure Refinement Summary for compound 1.
Table S2. Selected Bond Lengths (\AA) and Bond Angles (o) for compound 1.

Fig. S1 FT-IR spectra of compound 1.

a

b

c

Fig. S2 The coordinated modes of TCA^{3-} ligand in compound 1. a, $\mu_{2}-\eta^{1}: \eta^{1} ; \mathrm{b}, \mu_{2}-\eta^{2}: \eta^{1} ; \mathrm{c}, \mu_{2}-\eta^{2}$.

Fig. S3 Powder X-ray diffraction (PXRD) of simulated from the single-crystal data of 1 (black), as-synthesized compound $\mathbf{1}$ (blue), $\mathbf{1}+\mathrm{Fe}^{3+}$ (red) and $\mathbf{1}+\mathrm{Al}^{3+}$ (yellow).

Fig. S4 Typical DSC and TG curves of compound $\mathbf{1 .}$

Fig. S5 The UV/vis absorption spectra of the free ligand H_{3} TCA and its corresponding compounds $\mathrm{Tb}-\mathrm{MOF}$ were recorded in $\mathrm{CH}_{3} \mathrm{OH}$ solution ($c=1 \times 10^{-5} \mathrm{M}$).

Fig. S6 Solid-state excitation (purple line) and emission (blue line) spectra of compound $\mathbf{1}$.

Fig. S7 PXRD patterns of Tb-MOF: the simulated pattern from single crystal analysis, as-synthesized Tb-MOF and immersed in solution for 10 days.

Fig. S8 Day to day fluorescence stability of compound $\mathbf{1}$ in aqueous solution.

Fig. S8 Comparison of emission spectra of compound $\mathbf{1}, \mathrm{Tb}^{3+}$ and $\mathrm{H}_{3} \mathrm{TCA}\left(10^{-3} \mathrm{M}\right)$ under excitation at 375 nm .

Fig. S10 Optimization of the solvent.

Fig. S11 Optimization of the solvent ratio

Fig. S12 Comparison of the luminescence intensity at 549 nm of compound $\mathbf{1}$ in $10^{-3} \mathrm{M}$ different cations.

Fig. S13 Comparison of the luminescence intensity at 463 nm of compound $\mathbf{1}$ in $10^{-3} \mathrm{M}$ different cations.

Fig. S14 Photographs showing the visual color change of the Fe^{3+} ions solution before (left) and after (right) add compound 1 about 12h.

Fig. S15 The visual change on the addition of various $\mathrm{M}\left(\mathrm{NO}_{3}\right)_{\mathrm{x}}$ under the fluorescent lamp (left), laboratory UV light (right, $\lambda_{\mathrm{ex}}=365 \mathrm{~nm}$).

Fig. S16 Comparison of the luminescence intensity of $\mathbf{1}+\mathrm{Fe}^{3+}$ with different metal ions at $549 \mathrm{~nm}\left(10^{-4} \mathrm{M}\right)$.

Fig. S17 Comparison of the luminescence intensity of $\mathbf{1}+\mathrm{Al}^{3+}$ with different metal ions at $463 \mathrm{~nm}\left(10^{-4} \mathrm{M}\right)$.

Fig. S18 Fluorescence responses of Tb-MOF in aqueous solutions in the presence of various concentrations of Cu^{2+}.

Fig. S19 Fluorescence responses of Tb-MOF in aqueous solutions in the presence of various concentrations of Fe^{3+}.

Fig. S20 Low- (right) and high- magnification (left) TEM images of the products.

Fig. S21 Low- (right) and high- magnification (left) SEM images of the products.

Fig. S22 Comparison of the luminescence intensity of Tb^{3+} under $\mathrm{Fe}^{3+}\left(10^{-3} \mathrm{M}\right)$.

Fig. S23 The luminescence intensity (549 nm) of one recycles (a) after the first recycle.

Fig. S24 Comparison of the luminescence intensity of $\mathrm{H}_{3} \mathrm{TCA}$ and compound $\mathbf{1}$ under $\mathrm{Al}^{3+}\left(10^{-3} \mathrm{M}\right)$.

Table S1. Crystal Data and Structure Refinement Summary for compound 1.

	$\left[\mathbf{T b}_{\mathbf{3}}(\mathbf{T C A})_{\mathbf{2}}(\mathbf{D M A})_{0.5}(\mathbf{O H})_{\mathbf{3}}\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right)_{0.5}\right]^{\bullet 3} \mathbf{3 H}_{\mathbf{2}} \mathbf{O}$
Empirical formula	$\mathrm{C}_{44} \mathrm{H}_{38.5} \mathrm{~N}_{2.5} \mathrm{O}_{19} \mathrm{~Tb}_{3}$
Formula weight	1329.02
Crystal system	Monoclinic
space group	$\mathrm{C} 2 / \mathrm{c}$
$a(\AA)$	$29.155(3)$
$b(\AA)$	$11.0593(13)$
$c(\AA)$	$31.580(5)$

$\alpha(\mathrm{deg})$	90
$\beta(\mathrm{deg})$	$115.607(2)$
$\gamma(\mathrm{deg})$	90
$V\left(\AA^{3}\right)$	$9182(2)$
Z	8
$D_{c}\left(\mathrm{mg}^{3} \mathrm{~m}^{3}\right)$	1.923
$\mu\left(\mathrm{~mm}^{-1}\right)$	$4.643 \mathrm{~mm}^{-1}$
$F(000)$	5095
Reflections collected/unique	$24948 / 9386$
$R($ int $)$	0.0592
Data / restraints / parameters	$9386 / 42 / 623$
${\text { Goodness-of-fit on } \mathrm{F}^{2}}^{\mathrm{R}^{\mathrm{a}}[\mathrm{I}>2 \text { sigma }(\mathrm{I})]}$	1.01
$\mathrm{wR}_{2}^{\mathrm{b}}$ (all data)	0.0422

${ }^{a} R_{1}=\Sigma\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right) / \Sigma F_{\mathrm{o}} .{ }^{b} w R_{2}=\left[\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} / \Sigma w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]^{1 / 2 \mathrm{a}}$.

Table S2. Selected Bond Lengths (\AA) and Bond Angles (o) for compound 1.

Tbl-O1 ${ }^{3}$	2.772(5)	O14 ${ }^{2}-\mathrm{Tb} 1-\mathrm{O} 5^{4}$	156.01(18)
$\mathrm{Tb} 1-\mathrm{O} 2^{3}$	2.427(5)	O14 ${ }^{2}-\mathrm{Tb} 1-\mathrm{O} 6^{4}$	131.56(18)
Tb1-O3	2.512(5)	O142-Tbl-O9 ${ }^{1}$	99.59(17)
Tb1-O4	2.331(6)	$\mathrm{O} 15^{2}-\mathrm{Tb} 1-\mathrm{O} 1^{3}$	131.27(16)
Tb1-O5 ${ }^{4}$	2.443(6)	$\mathrm{O} 15^{2}-\mathrm{Tb} 1-\mathrm{O} 2^{3}$	128.6(2)
Tbl-O6 ${ }^{4}$	2.427(6)	O15 ${ }^{2}$-Tbl-O3	72.30(17)
Tbl-O9 ${ }^{1}$	2.404(5)	O15 ${ }^{2}-\mathrm{Tb} 1-\mathrm{O} 5^{4}$	127.27(18)
Tb1-O14 ${ }^{2}$	2.390 (5)	O15 ${ }^{2}-\mathrm{Tb} 1-\mathrm{O} 6^{4}$	138.94(19)
Tb1-O15 ${ }^{2}$	2.349 (5)	O15 ${ }^{2}-\mathrm{Tb} 1-\mathrm{O} 9^{1}$	69.68(17)
Tb2-O3 ${ }^{6}$	2.389(5)	$\mathrm{O} 15^{2}-\mathrm{Tb} 1-\mathrm{O} 14^{2}$	66.67(17)
Tb2-O5 ${ }^{7}$	2.630(6)	$\mathrm{O}^{5}-\mathrm{Tb} 2-\mathrm{O} 5^{7}$	62.15(18)
Tb2-O8	$2.314(5)$	$\mathrm{O} 3{ }^{5}-\mathrm{Tb} 2-\mathrm{O} 9^{8}$	81.14(18)
Tb2-O9	2.389(5)	$\mathrm{O} 3{ }^{5}-\mathrm{Tb} 2-\mathrm{O} 9$	77.22(17)
Tb2-O9 ${ }^{8}$	2.431 (5)	$\mathrm{O} 3{ }^{5}-\mathrm{Tb} 2-\mathrm{O} 10$	80.3(2)
Tb2-O10	2.459(6)	$\mathrm{O} 3^{5}-\mathrm{Tb} 2-\mathrm{O} 13{ }^{7}$	134.79(17)
Tb2-O13 ${ }^{7}$	2.910(6)	$\mathrm{O} 3^{5}-\mathrm{Tb} 2-\mathrm{O} 16^{7}$	92.67(19)
Tb2-O157	2.349 (5)	$\mathrm{O} 8-\mathrm{Tb} 2-\mathrm{O} 3{ }^{5}$	128.71(19)
Tb2-O16 ${ }^{7}$	2.413(6)	$\mathrm{O} 8-\mathrm{Tb} 2-\mathrm{O} 5^{7}$	66.60(18)
Tb3-O1 ${ }^{7}$	$2.387(5)$	O8-Tb2-O9	83.7(2)
Tb3-O7 ${ }^{7}$	2.304(5)	O8-Tb2-O9 ${ }^{8}$	133.38(19)
Tb3-O11 ${ }^{9}$	2.372(6)	O8-Tb2-O10	140.8(2)
Tb3-O1 ${ }^{3}$	2.294(5)	O8-Tb2-O13 ${ }^{7}$	70.75(19)
Tb3-O14 ${ }^{10}$	2.389(5)	O8-Tb2-O15 ${ }^{7}$	72.45(19)
Tb3-O14	2.357(5)	O8-Tb2-O16 ${ }^{7}$	78.0(2)
Tb3-O15	$2.325(5)$	$\mathrm{O} 9^{8}-\mathrm{Tb} 2-\mathrm{O} 5^{7}$	128.20(16)
$\mathrm{O} 2^{3}-\mathrm{Tb} 1-\mathrm{O} 1^{3}$	49.70(17)	O9-Tb2-O57	69.33(17)

O^{3} - $\mathrm{Tb} 1-\mathrm{O} 3$	136.63(18)	O9-Tb2-09 ${ }^{8}$	67.7(2)
$\mathrm{O} 2^{3}-\mathrm{Tb} 1-\mathrm{O} 5^{4}$	76.2(2)	O9 ${ }^{8}-\mathrm{Tb} 2-\mathrm{O} 10$	68.33(19)
$\mathrm{O} 2^{3}-\mathrm{Tb} 1-\mathrm{O}^{4}$	92.4(2)	O9-Tb2-O10	133.0(2)
$\mathrm{O} 3-\mathrm{Tb} 1-\mathrm{O1}{ }^{3}$	149.49(17)	$\mathrm{O} 9^{8}-\mathrm{Tb} 2-\mathrm{O} 13^{7}$	116.28(16)
$\mathrm{O} 4-\mathrm{Tb} 1-\mathrm{O} 1^{3}$	77.11(19)	O9-Tb2-O13 ${ }^{7}$	147.36(16)
$\mathrm{O} 4-\mathrm{Tb} 1-\mathrm{O} 2^{3}$	126.3(2)	O9-Tb2-O16 ${ }^{7}$	146.43(19)
O4-Tb1-O3	92.21(19)	O10-Tb2-O57	131.6(2)
O4-Tb1-O5 ${ }^{4}$	127.82(19)	O10-Tb2-O13 ${ }^{7}$	70.14(19)
O4-Tb1-O6 ${ }^{4}$	76.6(2)	O15 ${ }^{7}-\mathrm{Tb} 2-\mathrm{O} 3^{5}$	149.56(19)
O4-Tb1-O9 ${ }^{1}$	148.0(2)	O157-Tb2-O5 ${ }^{7}$	133.30(17)
O4-Tb1-O14 ${ }^{2}$	70.51(18)	O15 ${ }^{7}-\mathrm{Tb} 2-\mathrm{O} 9^{8}$	69.21(17)
O4-Tb1-O15 ${ }^{2}$	78.6(2)	O157-Tb2-O9	85.10(17)
$\mathrm{O5}^{4}-\mathrm{Tb} 1-\mathrm{O1}{ }^{3}$	100.86(18)	O157-Tb2-O10	94.5(2)
O54-Tb1-O3	63.24(18)	O15 ${ }^{7}-\mathrm{Tb} 2-\mathrm{O} 13{ }^{7}$	68.33(16)
$\mathrm{O}^{4}-\mathrm{Tbl} 1-\mathrm{Ol}^{3}$	73.23(18)	O167-Tb2-O5 ${ }^{7}$	77.60(19)
O64-Tb1-O3	76.53(19)	O16 ${ }^{7}-\mathrm{Tb} 2-09{ }^{8}$	143.01(18)
O64-Tbl-O5 ${ }^{4}$	54.06(18)	O167-Tb2-O10	74.7(2)
O9 ${ }^{1}-\mathrm{Tb} 1-\mathrm{O} 1^{3}$	127.72(16)	O16 ${ }^{7}-\mathrm{Tb} 2-\mathrm{O} 13{ }^{7}$	47.47(18)
O9 ${ }^{1}-\mathrm{Tb} 1-\mathrm{O} 2^{3}$	74.64(16)	$\mathrm{O1} 1^{7}-\mathrm{Tb} 3-\mathrm{O} 14^{10}$	72.19(19)
O91-Tbl-O3	79.17(18)	O77-Tb3-O17	80.47(19)
O9 ${ }^{1}-\mathrm{Tb} 1-\mathrm{O} 5^{4}$	72.37(18)	O77-Tb3-O1 ${ }^{19}$	78.4(2)
O9 ${ }^{1}-\mathrm{Tb} 1-\mathrm{O} 6^{4}$	126.10(18)	O77-Tb3-O14	143.03(18)
$\mathrm{O} 14^{2}-\mathrm{Tb} 1-\mathrm{O} 1^{3}$	65.59(17)	O77-Tb3-O14 ${ }^{10}$	136.15(18)
$\mathrm{O} 14^{2}-\mathrm{Tb} 1-\mathrm{O} 2^{3}$	80.1(2)	O77-Tb3-O15	76.57(19)
O142-Tb1-O3	137.72(18)		

