Supporting Information for Selective Production of Methanol by the Electrochemical Reduction of CO₂ on Boron-Doped Diamond Electrodes in Aqueous Ammonia Solution Prastika K. Jiwanti[†], Keisuke Natsui[†], Kazuya Nakata[‡], Yasuaki Einaga*,[†],§ †Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan [‡]Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan §ACCEL, Japan Science and Technology Agency, 5-3 Yonbancho, Chiyoda 102-8666, Japan *E-mail: einaga@chem.keio.ac.jp Figure S1. The apparatus for electrochemical reduction of CO_2 . **Table S1.** CO₂ concentration in the solution depending on the aqueous ammonia concentration (5 minutes CO₂ bubbling in 50-mL solutions). | Concentration | | | |------------------|------------------------|--| | $NH_{3(aq)}$ (M) | CO ₂ (mg/L) | | | 0.001 | 1520 | | | 0.01 | 2580 | | | 0.1 | 10380 | | | 1 | 67000 | | **Table S2.** CO₂ absorption in 0.1 M NH₃, 0.1 M KOH, and 0.1 M NaOH aqueous solutions (15 minutes CO₂ bubbling in 100-mL solutions). | Electrolyte | Concentration of CO ₂ (mg/L) | |-----------------------|---| | 0.1 M NH ₃ | 18400 | | 0.1 M KOH | 9960 | | 0.1 M NaOH | 7100 | Table S3. A repeatability study on Faradaic efficiencies of methanol production for 2 hours reduction of CO_2 on a BDD electrode in 1 M NH $_3$ aqueous solution at the potential of -1.3 V (vs. Ag/AgCl). | Experiments | Faradaic Efficiency (%) | |--------------------|-------------------------| | | CH₃OH | | 1 | 24.29 | | 2 | 27.44 | | 3 | 23.84 | | 4 | 24.47 | | Standard deviation | 1.97 |