Supporting Information for

Selective Production of Methanol by the Electrochemical Reduction of CO₂ on Boron-Doped Diamond Electrodes in Aqueous Ammonia Solution

Prastika K. Jiwanti[†], Keisuke Natsui[†], Kazuya Nakata[‡], Yasuaki Einaga*,[†],§

†Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan

[‡]Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

§ACCEL, Japan Science and Technology Agency, 5-3 Yonbancho, Chiyoda 102-8666, Japan

*E-mail: einaga@chem.keio.ac.jp

Figure S1. The apparatus for electrochemical reduction of CO_2 .

Table S1. CO₂ concentration in the solution depending on the aqueous ammonia concentration (5 minutes CO₂ bubbling in 50-mL solutions).

Concentration		
$NH_{3(aq)}$ (M)	CO ₂ (mg/L)	
0.001	1520	
0.01	2580	
0.1	10380	
1	67000	

Table S2. CO₂ absorption in 0.1 M NH₃, 0.1 M KOH, and 0.1 M NaOH aqueous solutions (15 minutes CO₂ bubbling in 100-mL solutions).

Electrolyte	Concentration of CO ₂ (mg/L)
0.1 M NH ₃	18400
0.1 M KOH	9960
0.1 M NaOH	7100

Table S3. A repeatability study on Faradaic efficiencies of methanol production for 2 hours reduction of CO_2 on a BDD electrode in 1 M NH $_3$ aqueous solution at the potential of -1.3 V (vs. Ag/AgCl).

Experiments	Faradaic Efficiency (%)
	CH₃OH
1	24.29
2	27.44
3	23.84
4	24.47
Standard deviation	1.97