Electronic Supplementary Information (ESI)

Size-Strain Distribution Analysis of SnO₂ Nanoparticles and its Multifunctional Applications of Fiber Optic Gas Sensor, Supercapacitor and Optical Limiter

K. Manikandan^a, S. Dhanuskodi^{a*}, Anitta Rose Thomas^b, N. Maheswari^c, G. Muralidharan^c and D. Sastikumar^d

^aNonlinear Optical Materials Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli - 620 024, India.

^bLight and Matter Physics Group, Raman Research Institute, Bangalore - 560 080, India.

^cDepartment of Physics, Gandhigram Rural Institute-Deemed University, Gandhigram,

Dindigul-624 302, India.

^dDepartment of Physics, National Institute of Technology, Tiruchirappalli-620 015, India.

Fig. S1 (a) UDM, (b) USDM, (c) UDEDM and (d) SSP plot of SnO₂ NPs.

Fig. S2 (a) Micro-Raman and (b) FTIR spectrum of SnO₂ NPs

Fig. S3 (a) UV-Vis absorption (inset: Tauc plot) and (b) PL spectrum for SnO₂ NPs.

Table S1. Comparison of the fiber optic gas sensing performance of SnO_2 NPs with other nanomaterials towards ammonia at ambient temperature.

Materials	Morphology	Sensitivity (counts/100ppm)	Ref
SWCNT	Nanotubes	11	40
(Purity:94wt%,			
diameter:1.3 nm)			
Li: ZnO	Nanocrystalline	15	41
Ag	Nanowires	17	42
SnO ₂	Nanoparticles	18	Present work

Table S2. Comparison of specific capacitance of SnO_2 NPs electrode with other metal oxide nanostructures.

Materials	Morphology	Electrolyte	Current density	Specific capacitance	Ref
			2	$(F.g^{-1})$	
CuO	Nanoporus	3M KOH	3.5 mA.cm ⁻²	431	45
NiO	Nanocluster	1M KOH	0.3 A.g ⁻¹	449	46
$\rm CO_3O_4$	Coralliod	ЗМ КОН	0.5 A.g ⁻¹	591	47
	Nanostructure				
MnO_2	Nanorod	1M KOH	1 A.g ⁻¹	821	48
SnO_2	Nanoparticles	2M KOH	2 mA.cm^{-2}	1686	Present work

Laser	Materials	Energy (µJ)	Intensity (I ₀) (GW/m ²)	NLO Response	β x 10 ⁻¹¹ m/W	Ref.
532 nm, 6.5 ns, 10 Hz	ZrS ₃ /RGO Composites	32	1430	RSA	62.7	55
532 nm, 5 ns, 0.1 Hz	(1-x) BiFeO ₃ -x NaNbO ₃ Multiferroic Nanocomposites	40	-	TPA	10	56
532 nm, 5 ns, 0.2 Hz	CuO NPs	50	-	TPA	6.4	52
532 nm, 40 ns, 1 kHz	MAPbI3 Perovskite film	-	2.5	TPA	22200	57
532 nm, 5 ns, 1 Hz	ErMn _{1-x} Cr _x O ₃ NPs	90	-	TPA	1.4	58
532 nm, 5 ns, 10 Hz	SnO ₂ NPs	50	2.83	TPA	1.7	Present work
532 nm, 5 ns, 10 Hz	SnO ₂ NPs	100	5.68	TPA	2.1	Present work

Table S3. Comparison of the NLO parameters of SnO_2 NPs with other NLO nanomaterials.