Insight into excitation-related luminescence properties of carbon dots: synergistic effect from photoluminescence centers in carbon core and on the surface

Bo Li,^{a,b} Yali Guo,^a Anam Iqbal,^a Yaping Dong,^b Wu Li,^b Weisheng Liu, ^a Wenwu Qin, ^{a*} Yabin Wang ^{b*}

a Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Lanzhou University, Lanzhou, 730000,P. R. China. Fax: (+86) 931-8912582 E-mail: qinww@lzu.edu.cn

b Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, P. R. China.E-mail: ybw@isl.ac.cn.

c School of chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.

Supporting information

Experimental data

Fig. S1 XRD spectra of prepared CA-CDs, N-CDs1 and N-CDs2.

Fig. S2 FT-IR spectra of CDs prepared with different proportion of raw materials (a) 1 mmol CA, (b) 1 mmol CA and 20 μL EDA, (c) 1 mmol CA and 100 μL EDA, (d) 1 mmol CA and 500 μL EDA, (e) 1 mmol CA and 1000 μL EDA, (f) 1 ml EDA, in 10 mL water at 160 °C for 6 h, respectively.

Fig. S3 O1s high-resolution XPS spectra of prepared CA-CDs, N-CDs1 and N-CDs2.

Fig. S4 UV–vis absorption of CA–CDs (A) and N–CDs2 (B) in water solution at pH values of 3, 7 and 11. The insets are the samples under day light and UV lamp (the excitation wavelength is 365 nm).

Fig.S5 Fluorescence spectra of CA-CDs at pH 3 (A),7 (B) and 11 (C) with excitation wavelengths from 250 nm to 360 nm.

Fig.S6 Fluorescence spectra of N-CDs2 at pH 3 (A), 7 (B) and 11 (C) with excitation wavelengths from 250 nm to 360 nm.

Fig. S7 Excitation wavelengths of CA-CDs at two different emission wavelengths of 430 nm and 470 nm with pH value of 3 (A), 7(B) and 11(C)

Fig. S8 Excitation wavelengths of N-CDs1 at two different emission wavelengths of 430 nm and 470 nm with pH value of 3 (A), 7(B) and 11(C)

Fig. S9 Excitation wavelengths of N-CDs2 at two different emission wavelengths of 430 nm and 470 nm with pH value of 3 (A), 7(B) and 11(C)

Fig.S10 Fluorescence spectra of CDs prepared with 1 mmol CA and 100 μ L EDA at pH 3 (A), 7 (B) and 11 (C) with excitation wavelengths from 250 nm to 360 nm.

Fig. S11 Fluorescence spectra of CDs prepared with 1 mmol CA and 500 μ L EDA at pH 3 (A), 7 (B) and 11 (C) with excitation wavelengths from 250 nm to 360 nm.

Fig. S12 The PL quantum yield of CA-CDs (A), N-CDs1 (B) and N-CDs2 (C) at pH 3, 7 and 11 with quinine sulfate in 0.1 M H2SO4 as a standard sample.

Elements	С	0	Ν
CA-CDs	60.14	39.86	
N-CDs1	65.04	24.36	10.60
N-CDs2	63.88	18.67	17.45

Tab. S1 XPS component ratio analyses of prepared CDs.

	C1s			Ols			N1s						
	C-C	C-N	С-ОН	С-О-С	0-C=0	-ОН	С=О	C-0	0=C-O*	Pyridinic	N-H	Pyrroli	N-(C) ₃
	/C=C			/C=N	(C=O)					N		c N	
CA-CDs	47.3		27.6		25.1		29.9	42.1	28.0				
N-CDs1	45.0	16.3	15.4	9.6	13.7	14.6	36.5	26.7	22.2			60.8	39.2
N-CDs2	43.3	27.2	10.5	10.8	8.2	22.1	49.4	28.5		18.4	30.0	28.3	23.4

Tab. S2 High-resolution XPS analyses of prepared CDs

	DU	EM	τ ₁ (ns)	τ ₂ (ns)	τ ₃ (ns)		2	QY
		(nm)	%	%	%	τ (ns)	X ²	%
-		435	1.18	4.33	11.08	0.04	1.008	- 10
	3		(23.11)	(46.07)	(30.82)	8.24		7.19
	7	435	0.93	4.25	11.86	9.42	1.083	E 1E
CA-CDS	/		(23.6)	(50.39)	(26)	8.43		5.15
	11	435	0.99	3.92	13.03	7 (7	1.031	5.17
	11		(20.97)	(63.42)	(15.61)	/.0/		
	3	460	2.3	6.98	12.66	10.68	1 025	25.80
N. CD-1	5		(7.45)	(42.81)	(49.75)	10.00	1.023	
	7	440	3.80	12.35		12.08	1.033	29.92
N-CDSI			(9.67)	(90.33)				29.92
	11	440	4.03	11.26		11.01	1.086	21.33
			(9.07)	(90.93)				
N-CDs2	3	460	4.99	9.96		8.72	1.065	32.48
			(39.87)	(60.13)				
	7ª	440	4.31	14.54		14.50	1.046	
			(1.23)	(98.77)				67.89
			14.38			14.38	1.067	
			(100)					
	11 ^a	440	2.18	10.32		10.30	1.034	
			(0.95)	(99.05)				39.07
			10.22			10.22	1.039	02.07
			(100)					

Tab. S3 Photophysical properties of prepared CDs. Decay times τ_1 , τ_2 and τ_3 ,
relative amplitude (%), average decay times and PL QY%.

a: The time-resolved emission of N–CDs2 can be described by a mono-exponential decay function and double– exponentialdecay function at pH value of 7 and 11.

	EDE or EIE (Fluorescence and up-conversion fluorescence)							
pН	CA-CDs	N-CDs1	N-CDs2					
	(N-free)	(N-doping)	(N-doping and amino)					
3	Strong EDE	Middle EDE	Slight EDE					
7	Strong EDE	EIE	EIE					
11	Strong EDE	EIE	EIE					

Tab. 4 EDE or EIE PL properties of prepared CDs