Theoretical Investigations of the Small Molecule Acceptor

Materials Based on Oligothiophene - Naphthalene Diimide in

Organic Solar Cells

Xiaoqin Tang, Xiaorui Liu, Wei Shen, Weixia Hu, Rongxing He, Ming Li*

 Table S1 The test HOMO energy levels of NDI-2T₃Me at the 6-31G** and 6-311G** basis set levels. All energies are in eV.

Opt test	B3LYP	M06	PBE0	PBE0	Exp
		6-31G**		6-311G**	Ŧ
номо	-5.18	-5.47	-5.43	-5.64	-5.6

Absorption test	B3LYP	PBE0	BMK	CAM-B3LYP	Exp
λ/nm	778	718	599	521	607

Table S2 The test electronic absorption spectra of $NDI-2T_3Me$ at the 6-311G** basis set levelsbased on the optimization structure.

Oligomers	Transition	λ _{max}	f	Main configuration	λ_{EXP}
NDI-2T ₁ Me	S_0-S_1	497	0.4836	H→L (96%)	525
	S ₀ -S ₉	292	0.4365	H→L+2 (49%)	
NDI-2T ₂ Me	S_0-S_1	576	0.8875	H→L (95%)	604
	S ₀ -S ₄	340	1.4851	H→L+2 (64%)	
NDI-2T ₃ Me	S_0-S_1	614	1.1813	H→L (92%)	632
	S ₀ -S ₄	376	2.1228	H→L+2 (63%)	
NDI-2T ₄ Me	S_0-S_1	631	1.4124	H→L (86%)	638
	S ₀ -S ₄	407	2.7418	H→L+2 (54%)	

Table S3 The calculated spectroscopic properties of $NDI-T_1Me$ — $NDI-T_4Me$. All absorption wavelengths are in nm. (Assignment: H=HOMO, L=LUMO, L+2=LUMO+2.)

Table S4 Electron density difference plots of electronic transition $S_0 \rightarrow S_1$ for NDI-T₁Me — NDI-T₄Me. ΔD is the electron transfer distance, Δq is the fraction of electron exchange, Ω is the overlap (normalization to the exchanged charge) between the regions of density depletion and increment.

Oligomers	Electronic differential density plots	Data analysed
	9	ΔD=0.202Å
		Δq=1.0148
		Ω=0.6016
NDI-2T ₁ Me		$S_0 \rightarrow S_1$
	و ب	ΔD=0.269Å
	i Drie Baars	$\Delta q = 1.1073$
		Ω=0.5797
NDI-2T ₂ Me		$S_0 \rightarrow S_1$
		(
	333 23 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ΔD=0.497Å
		Δq=1.1352
		Ω=0.5246
NDI-2T ₃ Me		$S_0 \rightarrow S_1$
	343	
NDI-2T ₄ Me		$\Delta D = 0.817 A$
		$\Delta q = 1.1017$
		Ω=0.4201
		$S_0 \rightarrow S_1$

Table S5 The hole mobility (μ_h) and its relative parameters (*r* is the intermolecular stacking distance, t_+ is the charge transfer integral, k_{CT-h} is the charge transfer rate) for NDI-T₁DCRD, NDI-T₄DCRD and NDI-T₃Me.

Oligomers	λ_h/eV	r/eV	V_{+}/eV	K_{CT-h}/S^{-1}	$\mu_h/cm^2 \cdot (V \cdot S)^{-1}$
NDI-2T ₃ Me	0.257	4.950	0.0044	5.32×10 ¹⁰	2.54×10-3
NDI-2T ₃ DCRD	0.181	4.825	0.0129	1.14×10^{12}	5.15×10-2
NDI-2T ₄ DCRD	0.182	4.825	0.0021	2.98×10^{10}	1.35×10-3

Table S6 Electron density difference plots of electronic transition $S_0 \rightarrow S_1$ for active blend layers **P3HT/Acceptor**. ΔD is the electron transfer distance, Δq is the fraction of electron exchange, Ω is the overlap (normalization to the exchanged charge) between the regions of density depletion and increment.

Oligomers	Electronic differential density plots	Data analysed	
P3HT/NDI-2T ₃ Me		S1:ΔD=5.342Å Δq=1.4357 Ω=0.0987	
P3HT/NDI-2T ₃ DCRD		S1:ΔD=5.924Å Δq=1.3537 Ω=0.0168	

Fig. S1 The distributions of Frontier Molecular Orbitals of NDI-T₁Me—NDI-T₄Me.

HOMO LUMO Fig. S2 The distributions of Frontier Molecular Orbitals.

Fig. S3 The possible transfer paths of NDI-2T₃DCVRD in a supercell.

Fig. S4 The scatter diagrams of electrostatic potential of NDI-2T₃Me (a), NDI-2T₃DCRD (b) and P3HT (c).

Fig. S5 The different-plane spatial structure of P3HT/Acceptor based on the optimized geometry.

HOMOLUMOFig. S6 The distributions of Frontier Molecular Orbitals of blend P3HT/Acceptor.