Electronic supplementary material

Exonuclease III-assisted substrate fragment recycling amplification strategy

for ultrasensitive detection of uranyl by a multipurpose RCDzyme

Jin-Xiu Cao ^a, Yong-Sheng Wang ^{a*}, Jin-Hua Xue ^a, Ming-Hui Li ^a, Si-Han Chen ^a, Xian

Tang a, Xiao-Feng Wang a, Yu-Feng Zhu a, Yan-Qin Huang a

^a College of Public Health, University of South China, Hengyang 421001, PR China

^b The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, PR

China

Experimental

Procedure for the control experiments

(1) The demonstration of the cleaved mechanism of DNAzyme by UO_2^{2+} using SGI

Into a 2-mL EP tube, a 7 μ L of 5.0 μ M S-DNA was mixed with 5 μ L of 5.0 μ M E-DNA in 10

 μ L of MES buffer solution (pH 5.5) including 3.0 M NaNO₃, and incubated at 95°C for 5 min, then cooled down to room temperature for 1 h. Thereafter, the different concentrations of UO₂²⁺ were added into DNAzyme solution prepared. The scission reaction was performed for 40 min at room temperature. Subsequently, a 50 μ L of 5×SGI was added in this solution. The mixture was diluted to a final volume of 450 μ L with water and incubated at room temperature for 15 min. Then, the fluorescence spectra were obtained by scanning from 500 to 570 nm at $\lambda_{ex} = 497$ nm. The spectral bandwidths of both the excitation and emission slits were set to 5 nm, respectively. The fluorescence intensity of the system was measured at $\lambda_{em} = 524$ nm, and represented as $\Delta F =$

^{*} Corresponding author. Tel: +86 734 8281595; fax: +86 734 8281771.

E-mail address: <u>yongsheng.w@tom.com</u> (Y.-S.Wang).

 $F - F_0$, here F and F_0 were the fluorescence intensities of the system with and without UO_2^{2+} , respectively.

(2) The demonstration of the cleaved mechanism of DNAzyme by UO₂²⁺ with UV-vis spectra

An aliquot of 50 µL E-DNA (25 µM) was mixed with 50 µL S-DNA (25 µM) in 43 µL of 1 M NaCl solution, followed by incubating in a 90 °C water bath for 3 min. After cooling to room temperature, 8.1 µL of above-mentioned solution and different concentrations of UO₂²⁺ were added in MES buffer of pH 4.5, held at room temperature for 6 min, and diluted to 210 µL by water. Then 50 µL of AuNPs, 140 µL of 200 mM NaCl were added. The final concentration of E-DNA/S-DNA was 0.177 µM. Afterward, the UV–vis absorption spectra were measured at λ_{max} 526 nm, and quantified by $\Delta A = A - A_0$, where A_0 and A were the absorbance of the system without and with UO₂²⁺, respectively.

Figure Captions:

Fig. S1. Optimization of single-labeled molecular beacon.

 c_{UO2}^{2+} = 75 nM, $c_{\text{S-DNA}}$ = 20 nM, $c_{\text{E-DNA}}$ = 25 nM.

Fig. S2. Effect of the concentration of SSP6 on the biosensing system.

 $c_{\rm UO2}^{2+}$ = 0.63 nM, $c_{\rm S-DNA}$ = 12.7 nM, $c_{\rm E-DNA}$ = 15.9 nM, $c_{\rm Exo III}$ = 8.9 U mL⁻¹.

Fig. S3. Effect of the concentration of Exo III on the biosensing system.

 $c_{\text{S-DNA}}$ = 12.7 nM, $c_{\text{E-DNA}}$ = 15.9 nM, c_{UO2}^{2+} = 0.63 nM, c_{SSP6} = 55.6 nM.

Fig. S4. Influence of molar ratio between S-DNA and E-DNA on the biosensing system.

 c_{UO2}^{2+} = 75.0 nM, c_{SSP6} = 31.3 nM, $c_{\text{Exo III}}$ = 8.9 U mL⁻¹.

Fig. S5. Effect of pH on the scission process for biosensing system.

 $c_{\text{SSP6}} = 11.0 \ \mu\text{M}, \ c_{\text{UO2}}^{2+} = 0.2 \ \mu\text{M}, \ c_{\text{S-DNA}} = 56.0 \ \text{nM}, \ c_{\text{E-DNA}} = 56.0 \ \text{nM}.$

Fig. S6. Effect of the amount of NEB buffer on the biosensing system.

 $c_{\text{SSP6}} = 55.6 \text{ nM}, c_{\text{UO2}^{2+}} = 0.63 \text{ nM}, c_{\text{S-DNA}} = 12.7 \text{ nM}, c_{\text{E-DNA}} = 15.9 \text{ nM}, c_{\text{Exo III}} = 8.9 \text{ U mL}^{-1}.$

Fig. S1. Optimization of single-labeled hairpin signal probe. $c_{UO2}^{2+} = 75 \text{ nM}, c_{S-DNA} = 20 \text{ nM}, c_{E-DNA} = 25 \text{ nM}, c_{SSP6} = 31.3 \text{ nM}, c_{SSP5} = 31.3 \text{ nM}.$

Fig. S2. Effect of the concentration of SSP6 on the biosensing system. $c_{\text{UO2}}^{2+} = 0.63 \text{ nM}, c_{\text{S-DNA}} = 12.7 \text{ nM}, c_{\text{E-DNA}} = 15.9 \text{ nM}, c_{\text{Exo III}} = 8.9 \text{ U mL}^{-1}.$

Fig. S3. Effect of the concentrations of Exo III on the biosensing system.

 $c_{\text{S-DNA}}$ = 12.7 nM, $c_{\text{E-DNA}}$ = 15.9 nM, c_{UO2}^{2+} = 0.63 nM, c_{SSP6} = 55.6 nM.

Fig. S4. Influence of molar ratio between S-DNA and E-DNA on the biosensing system.

 c_{UO2}^{2+} = 75.0 nM, c_{SSP6} = 31.3 nM, $c_{\text{Exo III}}$ = 8.9 U mL⁻¹.

Fig. S5. Effect of pH on the scission process for biosensing system. $c_{\text{SSP6}} = 11.0 \ \mu\text{M}, \ c_{\text{UO2}}^{2+} = 0.2 \ \mu\text{M}, \ c_{\text{S-DNA}} = 56.0 \ \text{nM}, \ c_{\text{E-DNA}} = 56.0 \ \text{nM}.$

Fig. S6. Effect of the amount of NEB buffer on the biosensing system.

 $c_{\text{SSP6}} = 55.6 \text{ nM}, c_{\text{UO2}^{2+}} = 0.63 \text{ nM}, c_{\text{S-DNA}} = 12.7 \text{ nM}, c_{\text{E-DNA}} = 15.9 \text{ nM}, c_{\text{Exo III}} = 8.9 \text{ U mL}^{-1}.$

Table S1. Sequences of SSP used in this work^a

SSP	sequences
SSP5	5'-FAM- <u>CAG TC</u> C GAT GAG ATA GTG AGT <u>GAC TG</u> G GG-3'
SSP6	5'-FAM- <u>CAG TCA GAT GAG ATA GTG AGT GAC TG</u> G GG-3'

^a The underlined sequences in SSP represent the stem of SSP.

Table S2. Comparison of this strategy with other methods for detection of UO_2^{2+a} .

Methods	Samples	Linearity ranges	LOD	Instrumental	Ref
				cost	
CBS	Soil	45pM – 400nM	45 pM	moderate	30
CS		50nM-2µM (Labled)	50nM	cheap	4
		1-100nM(Label-free)	lnM	cheap	4
UApt	water	22 – 550 nM	6.7 nM	moderate	9
LDG	water	13.6 – 150 nM	4.09 nM	moderate	6
GO-RCD	water	0.29 – 30 nM	86 pM	moderate	38
TRLFS	_		0.5 μΜ	moderate	40
CPSS	water	_	$6.14 \ \mu g \ L^{-1}$	moderate	41
DBES	_	2-14 nM	1 nM.	cheap	39
UV-vis	tea leaves	10.0–250 μ g L ⁻¹	$2.7~\mu g~L^{-1}$	moderate	42
Exo III	water	8.1 – 95 pM	2.4 pM	moderate	this work

^a:CBS: Catalytic beacon sensor; CS: Colorimetric Sensors; UApt: Uranyl aptamer-gold nanoparticles; LDG: Uranyl specific DNAzyme–gold nanoparticle; GO-RCD: Graphene oxide and RCDzyme-based signal amplification strategy; TRLFS: Time-resolved laser fluorescence spectroscopy; CPSS: Chelating polymeric sorbent-spectrophotometry; DBES: DNAzyme based electrochemical sensors.