Electronic Supplementary Information for

Photocatalysis of C, N-doped ZnO derived from ZIF-8 for dye

degradation and water oxidation

Ping Liang^a, Chi Zhang^a, Hongqi Sun^{b,*}, Shaomin Liu^a, Moses Tadé^a, and Shaobin Wang^{a,*}

^a Department of Chemical Engineering, Curtin University, GPO Box U1987, WA 6845, Australia

^b School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia

*Corresponding Authors

Email: <u>Shaobin.wang@curtin.edu.au</u> (S. Wang), <u>h.sun@ecu.edu.au</u> (H. Sun)

Scheme S1. The synthesis route of the samples

samples	6C25	7C25	8C25	6C20	6C30	6C40
C (wt.%)	2.71	4.48	12.66	4.01	0.93	0.66
N (wt.%)	0.57	1.47	4.02	1.16	0.35	0.14

Table S1. Carbon and nitrogen contents of the samples obtained from EDX analysis.

Figure S1. TGA of 6C25, 7C25 and 8C25 in air (a) and TGA/DTG of C600, C700 and C800 in air (b).

Figure S2. The high-resolution Zn 2p spectra of 6C25.

Figure S3. First-order kinetic rates of 6C20, 6C25, 6C30 and 6C40.

Figure S4. Stability of 6C25.