Supporting Information

Tandem additions of 3,4-dihydroisoquinolines to γ -hydroxy - α , β -unsaturated ketones: a green and new access to oxazolo [2,3-a]tetrahydroisoquinolines

Sheng-Han Huang, Yu-Wei Shih, Wen-Tse Huang, Deng-Hong Li and Te-Fang Yang*

Department of Applied Chemistry, National Chi Nan University, 1, University Road, Puli, 545, Nantou, Taiwan; E-mail: <u>tfyang@ncnu.edu.tw</u>

Content

1. General information	s2
 General procedures for the synthesis of γ-Hydroxyenones Characterization data of products 	s2
	s3
4. Reference	s15
5. NMR Spectra of products	s16
6. X-ray Crystallographic Data of compound 3a	s62

General information

Reactions were carried out in round bottom flasks fitted with rubber septa under argon. Crude product solutions were dried on Na₂SO₄ and concentrated with a rotary evaporator below 40 °C at ~ 30 Torr. Silica gel column chromatography was performed employing 230 - 400 mesh silica gel. Proton nuclear magnetic resonance (¹H NMR) and carbon nuclear magnetic resonance (¹³C NMR) spectra were obtained using Bruker Avance II (300 MHz) NMR spectrometer. Chemical shifts (δ scale) were expressed in parts per million downfield from tetramethylsilane (δ = 0.00). 1H NMR data were presented as follows: chemical shift, multiplicity (s = singlet, br = broad singlet, d = doublet, t = triplet, m = multiplet and/or multiple resonances), coupling constant in Hz (Hertz), integration. High-resolution mass spectra were determined on a Jasco JMS-HX 110 spectrometer. Reactions were monitored by thin layer chromatography (TLC) on Silicycle siliaplateTMG TLC plates (F-254 indicator).

General procedures for the synthesis of γ -Hydroxyenones

Scheme 1. Synthesis of γ-Hydroxyenones (2a-g)

To a solution of appropriate stabilizes ylide (1.5 mmol) in dry THF (30 mL) as added glycolaldehyde dimer (0.7 mmol), and the resulting solution was heated under reflux for 3 h. The

solution was cooled and concentrated under reduced pressure. The product was purified by chromatography(ethyl acetate: hexane = 1:1) to give the γ -Hydroxyenones (**2a-g**).

Characterization data of products

(E)-4-hydroxy-1-phenylbut-2-en-1-one (2a).

physical state: white solid; yield: 98% ; mp.:110-112 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.93 (d, 2H, *J* = 7.5 Hz), 7.53 (t, 1H, *J* = 7.2 Hz), 7.42 (t, 2H, *J* = 7.2 Hz), 7.08-7.29 (m, 2H), 4.44 (s, 2H), 3.64 (s, 1H); ¹³C NMR (75 MHz CDCl₃) δ 190.9, 148.1, 137.1, 132.9, 128.4, 123.2, 61.7.

(*E*)-1-(4-methoxyphenyl)-4-hydroxybut-2-en-1-one (2b).

physical state: white solid; yield: 91% ; mp: 90-92 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.99 (dt, J = 9, 2.7 Hz, 2H), 7.26-7.20 (m, 1H), 7.11 (dt, J = 15.3, 3.6 Hz, 1H), 6.95 (dt, J = 9, 3 Hz, 2H), 4.48-4.46 (m, 2H), 3.88 (s, 3H); ¹³C NMR (75 MHz CDCl₃) δ 188.9, 163.7, 146.4, 131.2, 130.7, 123.7, 114.0, 62.6, 55.7.

(E)-1-(4-Chlorophenyl)-4-hydroxybut-2-ene-1-one (2c).

physical state: yellow solid; yield: 91%; mp: 39-40 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.89 (d, J = 7.89 Hz, 2H), 7.43 (d, J = 8.7 Hz, 2H), 7.22-7.10 (m, 2H), 4.47 (s, 2H), 2.55 (brs, 1H); ¹³C NMR (75 MHz CDCl₃) δ 189.3, 147.9, 139.5, 135.9, 130.1, 129.0, 123.2, 62.3.

(*E*)-1-(4-nitrophenyl)-4-hydroxybut-2-ene-1-one (2d).

physical state: yellow solid; yield: 64% ; mp: 95-96 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.33 (d, *J* = 8.7 Hz, 2H), 8.11 (d, *J* = 8.7 Hz, 2H), 7.23-7.22 (m, 2H), 4.53 (s, 2H), 1.84 (brs, 1H); ¹³C NMR (75 MHz CDCl₃) δ 188.9, 150.2, 149.4, 142.5, 129.6, 123.9, 123.1, 62.3; HRMS: Calcd. for C₁₁H₁₂O₃: 207.0532. Found: 207.0523.

(E)-4-Hydroxy-10-(naphthalene-2-yl)but-2-ene-1-one (2e).

physical state: yellow solid; yield: 96% ; mp: 35-36 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.49 (s, 1H), 8.05 (dd, J = 8.7, 1.5 Hz, 1H), 7.96-7.85 (m, 3H), 7.62-7.51 (m, 2H), 7.40 (dt, J = 15.3, 1.8 Hz, 1H), 7.26-7.17 (m, 1H), 4.52 (s, 2H), 2.24 (brs, 1H); ¹³C NMR (75 MHz CDCl₃) δ 190.7, 147.9, 135.4, 134.6, 132.3, 130.4, 29.5, 128.5, 127.7, 126.7, 124.2, 123.5, 62.2.

(E)-1-methl-4-hydroxybut-2-ene-1-one (2f).

physical state: colorless oil; yield: 84%; ¹H NMR (300 MHz, CDCl₃) δ 6.88 (dt, *J* = 15.9, 3.9 Hz, 1H), 6.35 (dt, *J* = 15.9, 2.1 Hz, 1H), 4.38 (s, 2H), 2.28 (s, 3H); ¹³C NMR (75 MHz CDCl₃) δ 198.6, 145.9, 129.1, 61.9, 27.5..

(E)-1-t-butyl -4-hydroxybut-2-ene-1-one (2g).

physical state: colorless oil; yield: 67%; ¹H NMR (300 MHz, CDCl₃) δ 7.01 (dt, *J* = 15.3, 3.9 Hz, 1H), 6.80 (dt, *J* = 15.3, 1.8 Hz, 1H), 4.40-4.37 (m, 2H), 1.83 (brs, 1H), 1.17 (s, 9H); ¹³C NMR (75 MHz CDCl₃) δ 204.3, 145.1, 122.5, 62.4, 43.2, 26.2.

3-(2-phenyl-2-oxo-ethyl)-oxazolo[2,3-a]tetrahydroisoquinoline (3a).

Recrystallized from ethyl acetate/hexane, yield: 93% (15:1 mixture of two diastereomers); physical state: white solid; mp 124-125 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.97 (d, *J* = 7.5 Hz, 2H), 7.58-7.37 (m, 4H), 7.25-7.12 (m, 3H), 5.29 (s, 1H), 4.37 (t, *J* = 7.8 Hz, 1H), 3.93-3.85 (m, 1H), 3.58-3.45 (m, 2H), 3.16 (dd, *J* = 17.7, 7.8 Hz, 1H), 3.03-2.85 (m, 3H), 2.71 (d, *J* = 12 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 198.6, 136.9, 135.5, 133.3, 131.8, 128.9, 128.7, 128.3, 128.1, 126.3, 89, 69.3, 62.2, 46.9, 43.6, 29.8; HRMS: Calcd. for C₁₉H₁₉NO₂: 293.1416. Found: 293.1413.

9-methyl-3-(2-phenyl-2-oxo-ethyl)-oxazolo[2,3-a]tetrahydroisoquinoline (3b).

Recrystallized from ethyl acetate/hexane, yield: 95% (14:1 mixture of two diastereomers); physical state: white solid; mp 122-124 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.98 (d, *J* = 7.5 Hz, 2H), 7.60-7.44 (m, 3H), 7.21-7.05 (m, 3H), 5.27 (s, 1H), 4.37 (t, *J* = 7.5 Hz, 1H), 3.93-3.85 (m, 1H), 3.59-3.46 (m, 2H), 3.17 (dd, *J* = 17.7, 7.8 Hz, 1H), 2.98-2.90 (m, 3H), 2.71-2.66 (m, 1H), 2.32 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 198.7, 136.9, 135.9, 133.4, 132.4, 131.6, 129.3, 128.7, 128.3, 128.1, 128.0, 89.2, 69.4, 62.3, 47.2, 43.6, 29.4, 21.1; HRMS: Calcd. for C₂₀H₂₁NO₂: 307.1572. Found: 307.1573.

8-methoxy-3-(2-phenyl-2-oxo-ethyl)-oxazolo[2,3-a]tetrahydroisoquinoline (3c).

Recrystallized from ethyl acetate/hexane, yield: 95% (19:1 mixture of two diastereomers); physical state: white solid; mp 106-108 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.98 (d, *J* = 7.5 Hz, 2H), 7.58 (t, *J* = 7.5, Hz, 1H), 7.48 (t, *J* = 7.2 Hz, 2H), 7.06 (d, *J* = 8.4, Hz, 1H), 6.92 (d, *J* = 2.7, Hz, 1H), 6.83 (dd, *J* = 8.4, 2.7 Hz, 1H), 5.28 (s, 1H), 4.38 (t, *J* = 7.5 Hz, 1H), 3.95-3.86 (m, 7.2 Hz, 1H), 3.80 (s, 3H), 3.59-3.47 (m, 2H), 3.19 (dd, *J* = 17.7, 7.8 Hz, 1H), 2.99-2.88 (m, 3H), 2.71-2.64 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 198.7, 158.1, 136.9, 133.4, 132.8, 129.2, 128.7, 128.1, 127.6, 115.6, 112.7, 89.3, 69.4, 62.2, 55.4, 47.4, 43.6, 29.0; HRMS: Calcd. for C₂₀H₂₁NO₃: 323.1521. Found: 323.1526.

8,9-dimethoxy-3-(2-phenyl-2-oxo-ethyl)-oxazolo[2,3-a]tetrahydroisoquinoline (3d).

Recrystallized from ethyl acetate/hexane, yield: 95% (17:1 mixture of two diastereomers); physical state: white solid; mp: 126 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.98 (d, *J* = 7.8 Hz, 2H), 7.58 (t, *J* = 7.2, Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 2H), 6.88 (s, 1H), 6.62 (s, 1H), 5.24 (s, 1H), 4.39 (t, *J* = 8.1 Hz, 1H), 3.86 (d, *J* = 3.3 Hz, 6H), 3.59-3.45 (m, 2H), 3.18 (dd, *J* = 17.4, 7.8 Hz, 1H), 2.99-2.90 (m, 3H), 2.70-2.57 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 198.5, 148.9, 147.5, 136.7, 133.2, 128.6, 127.9, 123.6, 110.9, 110.4, 88.9, 69.2, 62.0, 55.8, 47.0, 43.5, 29.3; HRMS: Calcd. for C₂₁H₂₃NO₄: 353.1627. Found: 353.1624.

3-(2-phenyl-2-oxo-ethyl)-7-phenyl-oxazolo[2,3-a]tetrahydroisoquinoline (3e).

Recrystallized from ethyl acetate/hexane, yield: 90% (19:1 mixture of two diastereomers); physical state: white solid; mp 114-117 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.98 (d, *J* = 8.4 Hz, 2H), 7.60-7.22 (m, 11H), 5.39 (s, 1H), 4.38 (t, *J* = 7.5 Hz, 1H), 3.93-3.85 (m, 1H), 3.60-3.48 (m, 2H), 3.20 (dd, *J* = 17.4, 7.8 Hz, 1H), 2.97-2.74 (m, 3H), 2.57 (d, *J* = 15.3 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 198.6, 141.2, 140.9, 136.9, 133.4, 133.2, 132.3, 129.7, 129.2, 128.7, 128.2, 128.1, 127.1, 126.3, 89.5, 69.3, 62.4, 47.2, 43.6, 28.8; HRMS: Calcd. for C₂₅H₂₃NO₂: 369.1729. Found: 369.1735.

3-(2-phenyl-2-oxo-ethyl)-8-phenyl-oxazolo[2,3-a]tetrahydroisoquinoline (3f).

Recrystallized from ethyl acetate/hexane, yield: 93% (25:1 mixture of two diastereomers); physical state: white solid; mp 132-135 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.98 (d, *J* = 7.5 Hz, 2H), 7.57-7.55 (m, 3H), 7.48-7.30 (m, 8H), 5.34 (s, 1H), 4.38 (t, *J* = 7.5 Hz, 1H), 3.96-3.87 (m, Hz, 1H), 3.59-3.48 (m, 2H), 3.17 (dd, *J* = 17.7, 7.8 Hz, 1H), 3.07-2.89 (m, 3H), 2.77 (d, *J* = 14.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 198.6, 141.3, 140.8, 136.9, 135.9, 133.3, 130.9, 129.3, 128.8, 128.7, 128.1, 127.4, 127.2, 126.8, 125.3, 89.0, 69.4, 62.3, 47.0, 43.6, 30.0; .HRMS: Calcd. for C₂₅H₂₃NO₂: 369.1729. Found: 369.1732.

3-(2-phenyl-2-oxo-ethyl)-9-phenyl-oxazolo[2,3-a]tetrahydroisoquinoline (3g).

Recrystallized from ethyl acetate/hexane, yield: 97% (19:1 mixture of two diastereomers); physical state: white solid; mp 134-137 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.99 (d, *J* = 7.2 Hz, 2H), 7.63-7.55 (m, 4H), 7.49-7.39 (m, 4H), 7.34-7.29 (m, 1H), 7.24-7.20 (m, 1H), 5.36 (s, 1H), 4.40 (t, *J* = 7.8 Hz, 1H), 3.97-3.88 (m, 1H), 3.60-3.49 (m, 2H), 3.19 (dd, *J* = 17.7, 7.8 Hz, 1H), 3.07-2.89 (m, 3H), 2.76 (d, *J* = 11.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 198.7, 140.8, 139.5, 136.9, 134.7, 133.4, 132.3, 128.8, 128.6, 128.1, 127.6, 127.3, 127.2, 127.1, 89.2, 69.5, 62.3, 47.1, 43.7, 29.6; HRMS: Calcd. for C₂₅H₂₃NO₂: 369.1729. Found: 369.1721.

3-(2-phenyl-2-oxo-ethyl)-10-phenyl-oxazolo[2,3-a]tetrahydroisoquinoline (3h).

Recrystallized from ethyl acetate/hexane, yield: 91% (19:1 mixture of two diastereomers); physical state: white solid; mp 120-123 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.89 (d, *J* = 7.2 Hz, 2H), 7.55-7.24 (m, 10H), 7.16-7.09 (m, 2H), 4.96 (s, 1H), 4.30 (t, *J* = 8.1 Hz, 1H), 3.93-3.74 (m, 1H), 3.41 (dd, *J* = 17.7, 6.0 Hz, 1H), 3.13 (dd, *J* = 8.7, 5.1 Hz, 1H), 3.09-2.75 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 198.5, 143.5, 140.7, 136.7, 135.9, 133.3, 129.7, 128.6, 128.3, 128.0, 127.7, 127.5, 127.0, 86.9, 69.0, 61.8, 47.0, 43.7, 30.1; HRMS: Calcd. for C₂₅H₂₃NO₂: 369.1729. Found: 369.1723.

9-fluoro-3-(2-phenyl-2-oxo-ethyl)-oxazolo[2,3-a]tetrahydroisoquinoline (3i).

Recrystallized from ethyl acetate/hexane, yield: 87% (19:1 mixture of two diastereomers); physical state: white solid; mp 110-112 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.97 (d, *J* = 7.5 Hz, 2H), 7.59-7.43 (m, 3H), 7.11-7.06 (m, 2H), 6.94 (td, *J* = 8.7, 2.7 Hz, 1H), 5.23 (s, 1H), 4.35 (t, *J* = 7.8 Hz, 1H), 3.94-3.85 (m, 1H), 3.56-3.45 (m, 2H), 3.15 (dd, *J* = 17.7, 7.8 Hz, 1H), 3.00-2.87 (m, 3H), 2.72-2.65 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 198.4, 161.2 (d, *J* = 242.6 Hz), 136.8, 133.7 (d, *J* = 7.5 Hz), 133.3, 131.1, 129.6 (d, *J* = 7.5 Hz), 128.7, 128.0, 115.5 (d, *J* = 89.1 Hz), 115.2 (d, *J* = 90.6 Hz), 88.6, 69.3, 62.0, 46.9, 43.4, 29.0; HRMS: Calcd. for C₁₉H₁₈FNO₂: 311.1322. Found: 311.1325.

8-chloro-3-(2-phenyl-2-oxo-ethyl)-oxazolo[2,3-a]tetrahydroisoquinoline (3j).

Recrystallized from ethyl acetate/hexane, yield: 91% (14:1 mixture of two diastereomers); physical state: white solid; mp 113-115 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.97 (d, *J* = 7.2 Hz, 2H), 7.61-7.45 (m, 3H), 7.32 (d, *J* = 8.1, Hz, 1H), 7.23-7.14 (m, 2H), 5.24 (s, 1H), 4.37 (t, *J* = 7.8 Hz, 1H), 3.94-3.86 (m, 1H), 3.57-3.45 (m, 2H), 3.17 (dd, *J* = 17.7, 7.8 Hz, 1H), 3.00-2.83 (m, 3H), 2.73-2.67 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 198.4, 137.4, 136.7, 133.9, 133.3, 130.3, 130.2, 128.6, 128.0, 127.9, 126.6, 88.4, 69.3, 62.0, 46.4, 43.4, 29.6; HRMS: Calcd. for C₁₉H₁₈ClNO₂: 327.1026. Found: 327.1034.

10-chloro-3-(2-phenyl-2-oxo-ethyl)-oxazolo[2,3-a]tetrahydroisoquinoline (3k).

Recrystallized from ethyl acetate/hexane, yield: 80% (14:1 mixture of two diastereomers); physical state: white solid; mp 110-112 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.96 (d, *J* = 7.5 Hz, 2H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.46 (t, *J* = 7.8 Hz, 2H), 7.25 (d, *J* = 7.5 Hz, 1H), 7.18 (d, *J* = 7.5 Hz, 1H), 7.04 (d, *J* = 7.2 Hz, 1H), 5.35 (s, 1H), 4.38 (t, *J* = 7.8 Hz, 1H), 3.97-3.88 (m, 1H), 3.59-3.51 (m, 2H), 3.19 (dd, *J* = 17.7, 7.5 Hz, 1H), 3.05-2.90 (m, 3H), 2.78-2.72 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 198.4, 138.2, 136.8, 134.9, 133.3, 129.4, 129.3, 128.7, 128.0, 127.6, 126.8, 86.6, 69.0, 61.7, 46.5, 43.5, 30.1; HRMS: Calcd. for C₁₉H₁₈CINO₂: 327.1026. Found: 327.1029.

8-bromo-3-(2-phenyl-2-oxo-ethyl)-oxazolo[2,3-a]tetrahydroisoquinoline (31).

Recrystallized from ethyl acetate/hexane, yield: 93% (14:1 mixture of two diastereomers); physical state: white solid; mp 102-105 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.97 (d, *J* = 7.5 Hz, 2H), 7.55-7.60 (m, 1H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.38-7.31 (m, 2H), 7.27-7.24 (m, 1H), 5.22 (s, 1H), 4.36 (t, *J* = 7.8 Hz, 1H), 3.94-3.85 (m, 1H), 3.57-3.45 (m, 2H), 3.16 (dd, *J* = 17.7, 7.8 Hz, 1H), 3.00-2.85 (m, 3H), 2.73-2.65 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 198.5, 137.9, 136.8, 133.4, 131.0, 130.5, 129.6, 128.7, 128.1, 122.3, 88.6, 69.4, 62.2, 46.5, 43.6, 29.7; \Box HRMS: Calcd. for C₁₉H₁₈BrNO₂: 371.0521. Found: 371.0519.

3-[2-(4-methoxy-phenyl)-2-oxo-ethyl]-oxazolo[2,3-a]tetrahydroisoquinoline (4a).

Recrystallized from ethyl acetate/hexane, yield: 90% (9:1 mixture of two diastereomers); physical state: white solid; mp 70-71 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.96 (d, *J* = 8.7 Hz, 2H), 7.41-7.38 (m, 1H), 7.26-7.23 (m, 2H), 7.16-7.13 (m, 1H), 6.94 (d, *J* = 8.7 Hz, 2H), 5.30 (s, 1H), 4.37 (t, *J* = 8.1 Hz, 1H), 3.93-3.85 (m, 4H), 3.54-3.46 (m, 2H), 3.14 (dd, *J* = 17.4, 8.1 Hz, 1H), 2.99-2.90 (m, 3H), 2.74-2.70 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 197.3, 163.8, 135.6, 132.0, 130.5, 130.2, 129.0, 128.4, 128.2, 126.4, 113.9, 89.2, 69.5, 62.5, 55.6, 47.1, 43.3, 29.9; HRMS: Calcd. for C₂₀H₂₁NO₃: 323.1521. Found: 323.1524.

3-[2-(4-methoxy-phenyl)-2-oxo-ethyl]-9-methoxy-oxazolo[2,3-a]tetrahydroisoquinoline (4b). Recrystallized from ethyl acetate/hexane, yield: 92% (17:1 mixture of two diastereomers); physical state: white solid; mp 81-82 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.96 (d, *J* = 9 Hz, 2H), 7.05 (d, *J* = 8.4 Hz, 1H), 6.94 (d, *J* = 9 Hz, 3H), 6.82 (dd, *J* = 8.4, 2.4 Hz, 1H), 5.27 (s, 1H), 4.36 (t, *J* = 7.8 Hz, 1H), 3.93-3.85 (m, 4H), 3.79 (s, 3H), 3.53-3.45 (m, 2H), 3.13 (dd, *J* = 17.4, 7.2 Hz, 1H), 2.98-2.87 (m, 3H), 2.70-2.63 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 197.2, 163.7, 158.1, 132.8, 130.4, 130.0, 129.1, 127.6, 115.5, 113.8, 112.7 89.2, 69.4, 62.3, 55.5, 55.4, 47.3; HRMS: Calcd. for C₂₁H₂₃NO₄: 353.1627. Found: 353.1636.

9-fluoro3-[2-(4-methoxy-phenyl)-2-oxo-ethyl]-oxazolo[2,3-a]tetrahydroisoquinoline (4c). Recrystallized from ethyl acetate/hexane, yield: 95% (18:1 mixture of two diastereomers); physical state: white solid; mp 68-69 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.96 (d, *J* = 8.7 Hz, 2H), 7.12-7.08 (m, 2H), 6.98-6.93 (m, 3H), 5.29 (s, 1H), 4.36 (t, *J* = 8.1 Hz, 1H), 3.93-3.85 (m, 4H), 3.52-3.44 (m, 2H), 3.12 (dd, *J* = 17.4, 8.1 Hz, 1H), 3.00-2.86 (m, 3H), 2.74-2.67 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 197.0, 163.7, 161.3 (d, *J* = 242.9 Hz), 133.8 (d, *J* = 7.4 Hz), 131.2, 130.4, 130.0, 129.6 (d, *J* = 7.6 Hz), 115.6 (t, *J* = 87.9 Hz), 115.3 (d, *J* = 92.7 Hz), 113.8, 88.6, 69.5, 62.2, 55.5, 47.0, 43.1, 29.1; HRMS: Calcd. for C₂₀H₂₀FNO₃: 341.1427. Found: 341.1422.

8-bromo-3-[2-(4-methoxy-phenyl)-2-oxo-ethyl]-oxazolo[2,3-a]tetrahydroisoquinoline (4d).

Recrystallized from ethyl acetate/hexane, yield: 88% (25:1 mixture of two diastereomers); physical state: white solid; mp 92-93 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.95 (d, *J* = 8.7 Hz, 2H), 7.38-7.25 (m, 4H), 6.94 (d, *J* = 8.7 Hz, 2H), 5.23 (s, 1H), 4.35 (t, *J* = 8.1 Hz, 1H), 3.93-3.85 (m, 4H), 3.52-3.44 (m, 2H), 3.11 (dd, *J* = 17.4, 7.8 Hz, 1H), 2.99-2.82 (m, 3H), 2.70-2.65 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 197.0, 163.7, 137.9, 131.0, 130.6, 130.4, 130.0, 129.6, 122.3, 113.9, 88.6, 69.5, 62.3, 55.6, 46.5, 43.2, 29.7; HRMS: Calcd. for C₂₀H₂₀BrNO₃: 401.0627. Found: 401.0633.

3-[2-(4-Chloro-phenyl)-2-oxo-ethyl]-oxazolo[2,3-a]tetrahydroisoquinoline (4e).

Recrystallized from ethyl acetate/hexane, yield: 90% (13:1 mixture of two diastereomers); physical state: white solid; mp 83-84 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.92 (d, *J* = 8.7 Hz, 2H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.26-7.24 (m, 3H), 7.16-7.13 (m, 1H), 5.29 (s, 1H), 4.37 (t, *J* = 8.1 Hz, 1H), 3.93-3.84 (m, 1H), 3.55-3.46 (m, 2H), 3.13 (dd, *J* = 17.4, 7.5 Hz, 1H), 2.99-2.91 (m, 3H), 2.78-2.70 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 197.6, 139.9, 135.6, 135.4, 131.9, 130.2, 129.7, 129.1, 129.0, 128.5, 128.2, 126.5, 89.2, 69.4, 62.3, 47.1, 43.7, 29.9; HRMS: Calcd. for C₁₉H₁₈CINO₂: 327.1026. Found: 327.1035.

3-[2-(4-Chloro-phenyl)-2-oxo-ethyl]-9-methoxy-oxazolo[2,3-a]tetrahydroisoquinoline (4f). Recrystallized from ethyl acetate/hexane, yield: 92% (13:1 mixture of two diastereomers); physical state: white solid; mp 113-114 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.91 (d, *J* = 8.4 Hz, 2H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.05 (d, *J* = 8.4 Hz, 1H), 6.92 (d, *J* = 2.4 Hz, 1H), 6.82 (dd, *J* = 8.4, 2.7 Hz, 1H), 5.26 (s, 1H), 4.36 (t, *J* = 7.8 Hz, 1H), 3.92-3.83 (m, 1H), 3.79 (s, 3H), 3.54-3.45 (m, 2H), 3.12 (dd, *J* = 17.4, 7.8 Hz, 1H), 2.97-2.86 (m, 3H), 2.70-2.63 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 197.5, 158.2, 139.9, 135.3, 132.8, 129.6, 129.2, 129.1, 127.6, 115.6, 112.9, 89.3, 69.4, 62.3, 55.5, 47.4, 43.7, 29.0; HRMS: Calcd. for C₂₀H₂₀ClNO₃: 357.1132. Found: .357.1125.

3-[2-(4-Chloro-phenyl)-2-oxo-ethyl]-7-chloro-oxazolo[2,3-a]tetrahydroisoquinoline (4g).

Recrystallized from ethyl acetate/hexane, yield: 90% (13:1 mixture of two diastereomers); physical state: white solid; mp 102 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.91 (d, *J* = 8.4 Hz, 2H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.36-7.30 (m, 2H), 7.22-7.17 (m, 1H), 5.25 (s, 1H), 4.37 (t, *J* = 7.8 Hz, 1H), 3.89 (m, 1H), 3.54-3.45 (m, 2H), 3.12 (dd, *J* = 17.4, 7.5 Hz, 1H), 3.05-2.75 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 197.3, 139.9, 135.2, 133.8, 133.6, 129.5, 129.1, 127.5, 127.3, 88.7, 69.3, 62.0, 46.4, 43.5, 27.7; HRMS: Calcd. for C₁₉H₁₇Cl₂NO₃: 361.0636. Found: .361.0645.

3-[2-(4-nitro-phenyl)-2-oxo-ethyl]-oxazolo[2,3-a]tetrahydroisoquinoline (4h).

Recrystallized from ethyl acetate/hexane, yield: 88% (25:1 mixture of two diastereomers); physical state: yellow solid; mp 94-95 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.33 (d, *J* = 8.7 Hz, 2H), 8.14 (d, *J* = 9.0, Hz, 2H), 7.41-7.38 (m, 1H), 7.27-7.24 (m, 2H), 7.16-7.13 (m, 1H), 5.29 (s, 1H), 4.38 (t, *J* = 8.1 Hz, 1H), 3.93-3.88 (m, 1H), 3.59 (dd, *J* = 17.7, 6.9 Hz, 1H), 3.52-3.48 (m, 1H), 3.17 (dd, *J* = 17.7, 6.9 Hz, 1H), 2.99-2.90 (m, 3H), 2.77-2.70 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 197.2, 150.4, 141.3, 135.4, 131.6, 129.2, 128.9, 128.5, 128.1, 126.4, 124.0, 89.1, 69.1, 62.1, 47.0, 44.1, 29.8; ESI-MS: Calcd. for C₁₉H₁₉N₂O₄: 339.1339. Found: 339.1342.

9-methoxy-3-[2-(4-nitro-phenyl)-2-oxo-ethyl]-oxazolo[2,3-a]tetrahydroisoquinoline (4i).

Recrystallized from ethyl acetate/hexane, yield: 92% (25:1 mixture of two diastereomers); physical state: yellow solid; mp 118-119 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.32 (d, *J* = 8.7 Hz, 2H), 8.13 (d, *J* = 8.7, Hz, 2H), 7.06 (d, *J* = 8.4, Hz, 1H), 6.92 (d, *J* = 2.4, Hz, 1H), 6.83 (dd, *J* = 8.4, 2.7, Hz, 1H), 5.26 (s, 1H), 4.38 (t, *J* = 7.8 Hz, 1H), 3.94-3.86 (m, 1H), 3.80 (s, 3H), 3.62-3.47 (m, 2H), 3.70 (dd, *J* = 17.4, 6.9 Hz, 1H), 2.98-2.86 (m, 1H), 2.98-2.86 (m, 3H), 2.71-2.63 (m, 1H); ¹³C NMR (50 MHz, CDCl₃) δ 197.2, 158.1, 150.4, 141.3, 132.5, 129.2, 127.5, 124.0, 115.5, 112.8, 89.2, 69.1, 62.1, 55.4, 47.4, 44.1, 29.0; ESI-MS: Calcd. for C₂₀H₂₁N₂O₅: 369.1445. Found: 369.1433.

9-fluoro-3-[2-(4-nitro-phenyl)-2-oxo-ethyl]-oxazolo[2,3-a]tetrahydroisoquinoline (4j).

Recrystallized from ethyl acetate/hexane, yield: 90% (22:1 mixture of two diastereomers); physical state: yellow solid; mp 88-89 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.32 (d, *J* = 8.7 Hz, 2H), 8.13 (d, *J* = 8.7, Hz, 2H), 7.11-7.07 (m, 2H), 6.92 (td, *J* = 8.4, 2.7, Hz, 1H), 5.24 (s, 1H), 4.37 (t, *J* = 7.8 Hz, 1H), 3.95-3.87 (m, 1H), 3.61-3.47 (m, 2H), 3.17 (dd, *J* = 17.7, 6.9 Hz, 1H), 3.00-2.87 (m, 3H), 2.75-2.86 (m, 1H); ¹³C NMR (50 MHz, CDCl₃) δ 197.1, 161.34 (d, *J* = 243 Hz), 150.4, 141.2, 133.4 (d, *J* = 7.2 Hz), 131.1, 129.7 (d, *J* = 7.8 Hz), 129.1, 123.9, 115.7 (d, *J* = 21.8 Hz), 115.3 (d, *J* = 21.8 Hz), 88.2, 69.1, 61.9, 47.0, 44.0, 29.1; ESI-MS: Calcd. for C₁₉H₁₈FN₂O₄: 357.1245. Found: 357.1234.

9-bromo-3-[2-(4-nitro-phenyl)-2-oxo-ethyl]-oxazolo[2,3-a]tetrahydroisoquinoline (4k).

Recrystallized from ethyl acetate/hexane, yield: 89% (25:1 mixture of two diastereomers); physical state: yellow solid; mp 120-121 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.33 (d, *J* = 8.7 Hz, 2H), 8.13 (d, *J* = 8.7, Hz, 2H), 7.54 (s, 1H), 7.37 (d, *J* = 8.1, Hz, 1H), 7.03 (d, *J* = 8.1, Hz, 1H), 5.22 (s, 1H), 4.37 (t, *J* = 7.8 Hz, 1H), 3.92-3.86 (m, 1H), 3.61-3.47 (m, 2H), 3.16 (dd, *J* = 17.7, 6.9 Hz, 1H), 3.01-2.81 (m, 3H), 2.73-2.66 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 197.0, 150.5, 159.6, 141.2, 134.5, 133.8, 131.7, 131.5, 129.8, 129.2, 124.0, 119.9, 88.4, 69.2, 61.9, 46.8, 44.0, 29.3; ESI-MS: Calcd. for C₁₉H₁₈BrN₂O₄: 417.0444. Found: 417.0462.

3-[2-(naphthalene-2-yl)-2-oxo-ethyl]-oxazolo[2,3-a]tetrahydroisoquinoline (41).

Recrystallized from ethyl acetate/hexane, yield: 93% (15:1 mixture of two diastereomers); physical state: white solid; mp 100-101 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.51 (s, 1H), 8.04 (d, *J* = 8.7 Hz, 1H), 7.97-7.87 (m, 3H), 7.63-7.53 (m, 2H), 7.42-7.40 (m, 1H), 7.26-7.24 (m, 2H), 7.16-7.13(m, 1H), 5.35 (s, 1H), 4.42 (t, *J* = 8.1 Hz, 1H), 4.00-3.92 (m, 1H), 3.70 (dd, *J* = 17.7, 6.3 Hz, 1H), 3.54 (dd, *J* = 8.4, 4.8 Hz, 1H), 3.33 (dd, *J* = 17.4, 7.8 Hz, 1H), 3.03-2.92 (m, 3H), 2.78-2.71 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 198.6, 135.7, 135.5, 134.2, 132.5, 131.9, 130.0, 129.7, 128.9, 128.7, 128.6, 128.4, 128.1, 127.9, 126.9, 126.4, 123.7, 89.1, 69.5, 62.4, 47.0, 43.7, 29.9; HRMS: Calcd. for C₂₃H₂₁NO₂: 343.1572. Found: 343.1570.

8-methoxy-3-[2-(naphthalene-2-yl)-2-oxo-ethyl]-oxazolo[2,3-a]tetrahydroisoquinoline (4m).

Recrystallized from ethyl acetate/hexane, yield: 90% (21:1 mixture of two diastereomers); physical state: white solid; mp 100-101 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.53 (s, 1H), 8.06 (d, *J* = 8.7 Hz, 1H), 7.99-7.89 (m, 3H), 7.66-7.55 (m, 2H), 7.08 (d, *J* = 8.4 Hz, 1H), 6.96 (d, *J* = 2.4 Hz, 1H), 6.85 (d, *J* = 8.4 Hz, 1H), 5.35 (s, 1H), 4.43 (t, *J* = 7.8 Hz, 1H), 3.98 (m, 1H), 3.82 (s, 3H), 3.71 (dd, *J* = 17.4, 6 Hz, 1H), 3.56 (dd, *J* = 8.4, 4.8 Hz, 1H), 3.35 (dd, *J* = 17.4, 7.8 Hz, 1H), 3.03-2.89 (m, 3H), 2.74-2.67 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ ; HRMS: Calcd. for C₂₄H₂₃NO₃: 373.1678. Found: 373.1669.

7-fluoro-3-[2-(naphthalene-2-yl)-2-oxo-ethyl]-oxazolo[2,3-a]tetrahydroisoquinoline (4n). Recrystallized from ethyl acetate/hexane, yield: 92% (14:1 mixture of two diastereomers); physical state: white solid; mp 118 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.50 (s, 1H), 8.04 (d, *J* = 8.7 Hz, 1H), 7.97-7.89 (m, 3H), 7.64-7.53 (m, 2H), 7.22-7.21 (m, 2H), 7.02-6.96 (m, 1H), 5.33 (s, 1H), 4.42 (t, *J* = 8.1 Hz, 1H), 4.02-3.93 (m, 1H), 3.69 (dd, *J* = 17.7, 6.3 Hz, 1H), 3.55 (dd, *J* = 8.4, 4.8 Hz, 1H), 3.32 (dd, *J* = 17.7, 7.8 Hz, 1H), 3.07-3.03 (m, 1H), 2.97-2.69 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 198.4, 160.4 (d, *J* = 243.7 Hz), 135.8, 134.2, 132.5, 130.0, 129.7, 128.7 (d, *J* = 4.5Hz), 127.9, 127.5(d, *J* = 7.6 Hz), 127.0, 124.5, 123.7, 123.4, 123.2, 114.7 (d, *J* = 21.2 Hz), 88.4, 69.5, 62.2, 46.1, 43.7, 22.9; HRMS: Calcd. for C₂₄H₂₅FNO₃: 361.1478. Found: 361.1485.

9-chloro-3-[2-(naphthalene-2-yl)-2-oxo-ethyl]-oxazolo[2,3-a]tetrahydroisoquinoline (40). Recrystallized from ethyl acetate/hexane, yield: 93% (16:1 mixture of two diastereomers); physical state: white solid; mp 95-96 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.50 (s, 1H), 8.04 (d, *J* = 8.4 Hz, 1H), 7.97-7.86 (m, 3H), 7.63-7.53 (m, 2H), 7.40 (s, 1H), 7.25-7.20 (m, 1H), 7.07 (d, *J* = 7.8 Hz, 1H), 5.28 (s, 1H), 4.40 (t, *J* = 7.8 Hz, 1H), 3.97-3.64 (m, 1H), 3.67 (dd, *J* = 17.7, 6.3 Hz, 1H), 3.56-3.51 (m, 1H), 3.29 (dd, *J* = 17.4, 7.5 Hz, 1H), 3.02-2.89 (m, 3H), 2.72-2.67 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 198.4, 135.7, 134.1, 134.0, 133.7, 132.5, 131.9, 129.9, 129.5, 128.8, 128.7, 128.6, 128.5, 127.8, 126.9, 123.6, 88.5, 69.4, 62.2, 46.8, 43.6, 29.3; HRMS: Calcd. for C₂₃H₂₀CINO₂: 377.1183. Found: 377.1184.

3-[2-(naphthalene-2-yl)-2-oxo-ethyl]-8-phenyl-oxazolo[2,3-a]tetrahydroisoquinoline (4p).

Recrystallized from ethyl acetate/hexane, yield: 92% (17:1 mixture of two diastereomers); physical state: white solid; mp 95-96 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.52 (s, 1H), 8.06 (dd, J = 8.7, 1.5 Hz, 1H), 7.98-7.87 (m, 3H), 7.64-7.54 (m, 4H), 7.48-7.34 (m, 6H), 5.40 (s, 1H), 4.43 (t, J = 7.5 Hz, 1H), 4.01-3.96 (m, 1H), 3.71 (dd, J = 17.4, 6.3 Hz, 1H), 3.57 (dd, J = 8.4, 4.8 Hz, 1H), 3.34 (dd, J = 17.4, 7.8 Hz, 1H), 3.06-2.96 (m, 3H), 2.82-2.78 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 198.6, 141.3, 140.9, 136.0, 135.8, 134.3, 132.6, 131.0, 130.0, 129.7, 129.3, 128.8, 128.7, 129.7, 127.5, 127.2, 127.0, 126.8, 125.4, 123.8, 89.1, 69.5, 62.4, 47.1, 43.8, 30.1.

3-(2-methyl-2-oxo-ethyl)-oxazolo[2,3-a]tetrahydroisoquinoline (4q).

Physical state: yellow oil, yield: 92% (12:1 mixture of two diastereomers); ¹H NMR (300 MHz, CDCl₃) δ 7.38-7.35 (m, 1H), 7.24-7.21 (m, 2H), 7.14 (m, 1H), 5.20 (s, 1H), 4.23 (t, *J* = 8.1 Hz, 1H), 3.73-3.64 (m, 1H), 3.36 (dd, *J* = 8.4, 4.8 Hz, 1H), 2.97-2.86 (m, 4H), 2.73-2.55 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 207.3, 135.3, 131.6, 128.8, 128.3, 128.0, 126.2, 88.9, 68.7, 61.8, 48.1, 46.8, 30.7, 29.6; HRMS: Calcd. for C₁₄H₁₇NO₂: 231.1259. Found: 231.1257.

9-methoxy-3-(2-methyl-2-oxo-ethyl)-oxazolo[2,3-a]tetrahydroisoquinoline (4r).

Physical state: yellow oil, yield: 95% (7:1 mixture of two diastereomers); ¹H NMR (300 MHz, CDCl₃) δ 7.05 (d, J = 8.7 Hz, 1H), 6.90 (d, J = 2.7 Hz, 1H), 6.82 (dd, J = 8.7, 2.7 Hz, 1H), 5.19 (s, 1H), 4.24 (t, J = 7.9 Hz, 1H), 3.79 (s, 3H), 3.74-3.65 (m, 1), 3.37 (dd, J = 8.4, 4.8 Hz, 1H), 2.98-2.82 (m, 4H), 2.66-2.57 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 207.1, 157.9, 132.5, 128.9, 127.3, 115.2, 112.6, 88.9, 68.6, 61.7, 55.2, 47.9, 47.0, 30.6, 28.7; HRMS: Calcd. for C₁₅H₁₉NO₃: 261.1365. Found: 261.1358.

9-fluoro-3-(2-methyl-2-oxo-ethyl)-oxazolo[2,3-a]tetrahydroisoquinoline (4s).

Physical state: yellow oil, yield: 90% (25:1 mixture of two diastereomers); ¹H NMR (300 MHz, CDCl₃) δ 7.12-7.06 (m, 2H), 6.99-6.92 (m, 1H), 5.16 (s, 1H), 4.24 (t, *J* = 7.8 Hz, 1H), 3.73-3.69 (m, 1H), 3.37 (dd, *J* = 8.4, 4.8 Hz, 1H), 2.97-2.81 (m, 4H), 2.72-2.57 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 207.0, 161.0 (d, *J* = 242.6 Hz), 133.5 (d, *J* = 7.2 Hz), 131.0, 129.4 (d, *J* = 7.5 Hz), 115.3 (d, *J* = 88.5 Hz), 115.0 (d, *J* = 89.7 Hz), 88.3, 68.6, 61.5, 47.8, 46.7, 30.5, 28.8; HRMS: Calcd. for C₁₄H₁₆FNO₂: 249.1165. Found: 249.1162.

9- chloro-3-(2-methyl-2-oxo-ethyl)-oxazolo[2,3-a]tetrahydroisoquinoline (4t).

Physical state: yellow oil, yield: 91% (14:1 mixture of two diastereomers); ¹H NMR (300 MHz, CDCl₃) δ 7.12-7.06 (m, 2H), 6.98-6.92 (m, 1H), 5.16 (s, 1H), 4.23 (t, *J* = 7.8 Hz, 1H), 3.75-3.66 (m, 1H), 3.37 (dd, *J* = 8.4, 4.8 Hz, 1H), 2.97-2.80 (m, 4H), 2.71-2.62 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 207.1, 133.9, 133.5, 131.8, 129.4, 128.7, 128.4, 88.3, 68.8, 61.7, 48.0, 46.6, 30.7, 29.2; HRMS: Calcd. for C₁₄H₁₆ClNO₂: 265.0870. Found: 265.0865.

3-[2-(t-butyl)-2-oxo-ethyl]-2-oxo-ethyl-oxazolo[2,3-a]tetrahydroisoquinoline (4u).

Physical state: yellow oil, yield: 96% (25:1 mixture of two diastereomers); ¹H NMR (300 MHz, CDCl₃) δ 7.39-7.36 (m, 1H), 7.27-7.22 (m, 2H), 7.14-7.11 (m, 1H), 5.22 (s, 1H), 4.27 (t, *J* = 7.8 Hz, 1H), 3.76-3.68 (m, 1H), 3.33 (dd, *J* = 8.1, 4.8 Hz, 1H), 3.05 (dd, *J* = 7.7, 6.3 Hz, 1H), 2.97-2.84 (m, 3H), 2.72-2.63 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 214.7, 135.4, 131.8, 128.8, 128.3, 128.0, 126.3, 88.9, 69.2, 62.2, 46.9, 44.1, 41.5, 29.8, 26.3; HRMS: Calcd. for C₁₇H₂₃NO₂: 2731729. Found: 273.1722.

3-[2-(*t***-butyl)-2-oxo-ethyl]-9-methoxy-2-oxo-ethyl-oxazolo[2,3-a]tetrahydroisoquinoline (4v).** Physical state: yellow oil, yield: 96% (25:1 mixture of two diastereomers); ¹H NMR (300 MHz, CDCl₃) δ 7.03 (d, *J* = 8.4 Hz, 1H), 6.9 (d, *J* = 6.9 Hz, 1H), 6.81 (dd, *J* = 8.1, 2.4 Hz, 1H), 5.19 (s, 1H), 4.26 (t, *J* = 8.1 Hz, 1H), 3.78-3.67 (m, 4H), 3.33 (dd, *J* = 8.4, 4.8 Hz, 1H), 3.04 (dd, *J* = 17.4, 6.0 Hz, 1H), 2.90-2.80 (m, 3H), 2.72-2.61 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 214.7, 158.1, 132.8, 129.1, 127.6, 115.5, 112.7, 89.1, 69.2, 62.2, 55.3, 47.3, 44.1, 41.6, 29.0; HRMS: Calcd. for C₁₈H₂₅NO₃: 303.1834. Found: 303.1831.

9-fluoro-3-[2-(*t***-butyl)-2-oxo-ethyl]-2-oxo-ethyl-oxazolo[2,3-a]tetrahydroisoquinoline (4w).** Physical state: yellow oil, yield: 91% (25:1 mixture of two diastereomers); ¹H NMR (300 MHz, CDCl₃) δ 7.12-7.06 (m, 2H), 6.94 (td, J = 8.4, 2.4 Hz, 1H), 5.17 (s, 1H), 4.26 (t, J = 8.1 Hz, 1H), 3.77-3.68 (m, 1H), 3.33 (dd, J = 8.4, 4.8 Hz, 1H), 3.03 (dd, J = 17.4, 6.3 Hz, 1H), 2.92-2.80 (m, 3H), 2.71-2.63 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 214.7, 161.3 (d, J = 242.5 Hz), 133.9 (d, J = 7.2 Hz), 131.3, 129.7 (d, J = 7.5 Hz), 115.6 (d, J = 87.3 Hz), 115.3 (d, J = 88.5 Hz), 88.7, 69.3, 62.2, 47.0, 44.2, 41.6, 29.2, 26.4; HRMS: Calcd. for C₁₇H₂₂FNO₂: 291.1635. Found: 291.1631.

9- chloro-3-[2-(t-butyl)-2-oxo-ethyl]-2-oxo-ethyl-oxazolo[2,3-a]tetrahydroisoquinoline (4x).

Physical state: yellow oil, yield: 92% (25:1 mixture of two diastereomers); ¹H NMR (300 MHz, CDCl₃) δ 7.37 (s, 1H), 7.20 (d, *J* = 8.1 Hz, 1H), 7.06 (d, *J* = 8.1 Hz, 1H), 5.16 (s, 1H), 4.26 (t, *J* = 7.8 Hz, 1H), 3.76-3.67 (m, 1H), 3.33 (dd, *J* = 8.4, 4.8 Hz, 1H), 3.03 (dd, *J* = 17.7, 6.3 Hz, 1H), 2.93-2.80 (m, 3H), 2.70-2.62 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 214.7, 134.1, 133.8, 131.9, 129.5, 128.8, 128.5, 88.5, 69.3, 62.2, 46.8, 44.2, 41.6, 29.4, 26.4; HRMS: Calcd. for C₁₇H₂₂ClNO₂: 307.1339. Found: 307.1337.

Reference

- [1] T. Inokuma, K. Takasu, T. Sakaeda, and Y. Takemoto, Org. Lett., 2006, 11, 2425-2428.
- [2] B. W. Greatrex, M. C. Kimber, D. K. Taylor, E. R. T. Tiekink., J. Org. Chem. 2003, 68, 4239-4246.

NMR Spectra of Product

1

Figure S1: ¹H NMR spectra of compound 2a.

Figure S2: ¹³C NMR spectra of compound 2a.

Figure S3: ¹H NMR spectra of compound 2b.

Figure S4: ¹³C NMR spectra of compound 2b.

Figure S5: ¹H NMR spectra of compound 2c.

Figure S6: ¹³C NMR spectra of compound 2c.

Figure S7: ¹H NMR spectra of compound 2d.

Figure S8: ¹³C NMR spectra of compound 2d.

Figure S9: ¹H NMR spectra of compound 2e.

Figure S10: ¹³C NMR spectra of compound 2e.

Figure S11: ¹H NMR spectra of compound 2f.

Figure S12: ¹³C NMR spectra of compound 2f.

Figure S13: ¹H NMR spectra of compound 2g.

Figure S14: ¹³C NMR spectra of compound 2g.

Figure S15: ¹H NMR spectra of compound 3a.

Figure S16: ¹³C NMR spectra of compound **3a**.

Figure S17: ¹H NMR spectra of compound 3b.

Figure S18: ¹³C NMR spectra of compound 3b.

Figure S19: ¹H NMR spectra of compound 3c.

Figure S20: ¹³C NMR spectra of compound 3c.

and distant

Figure S21: ¹H NMR spectra of compound 3d.

and the second second

Figure S22: ¹³C NMR spectra of compound 3d.

Figure S23: ¹H NMR spectra of compound 3e.

Figure S24: ¹³C NMR spectra of compound 3e.

Figure S25: ¹H NMR spectra of compound 3f.

Figure S26: ¹³C NMR spectra of compound 3f.

Figure S27: ¹H NMR spectra of compound 3g.

Figure S28: ¹³C NMR spectra of compound 3g.

Figure S29: ¹H NMR spectra of compound 3h.

Figure S30: ¹³C NMR spectra of compound 3h.

Figure S31: ¹H NMR spectra of compound 3i.

Figure S33: ¹H NMR spectra of compound 3j.

Figure S34: ¹³C NMR spectra of compound 3j.

Figure S35: ¹H NMR spectra of compound 3k.

Figure S36: ¹³C NMR spectra of compound 3k.

Figure S37: ¹H NMR spectra of compound 31

Figure S38: ¹³C NMR spectra of compound 3I.

Figure S39: ¹H NMR spectra of compound 4a.

Figure S40: ¹³C NMR spectra of compound 4a.

Figure S41: ¹H NMR spectra of compound 4b

Figure S42: ¹³C NMR spectra of compound 4b.

Figure S43: ¹H NMR spectra of compound 4c

Figure S44: ¹³C NMR spectra of compound 4c.

Figure S45: ¹H NMR spectra of compound 4d

Figure S46: ¹³C NMR spectra of compound 4d.

Figure S47: ¹H NMR spectra of compound 4e

Figure S48: ¹³C NMR spectra of compound 4e.

Figure S49: ¹H NMR spectra of compound 4f

Figure S50: ¹³C NMR spectra of compound 4f.

Figure S51: ¹H NMR spectra of compound 4g.

Figure S52: ¹³C NMR spectra of compound 4g.

Figure S53: ¹H NMR spectra of compound 4h.

Figure S54: ¹³C NMR spectra of compound 4h.

Figure S55: ¹H NMR spectra of compound 4i.

Figure S56: ¹³C NMR spectra of compound 4i.

Figure S57: ¹H NMR spectra of compound 4j.

Figure S58: ¹³C NMR spectra of compound 4j.

Figure S59: ¹H NMR spectra of compound 4k.

Figure S60: ¹³C NMR spectra of compound 4k.

Figure S61: ¹H NMR spectra of compound 4l.

Figure S62: ¹³C NMR spectra of compound 4I.

Figure S63: ¹H NMR spectra of compound 4m.

Figure S64: ¹³C NMR spectra of compound 4m.

Figure S65: ¹H NMR spectra of compound 4n.

Figure S66: ¹³C NMR spectra of compound 4n.

Figure S67: ¹H NMR spectra of compound 40.

Figure S68: ¹³C NMR spectra of compound 40.

Figure S69: ¹H NMR spectra of compound 4p.

Figure S70: ¹³C NMR spectra of compound 4p.

Figure S71: ¹³C NMR spectra of compound 4q.

Figure S72: ¹³C NMR spectra of compound 4q.

Figure S73: ¹H NMR spectra of compound 4r.

Figure S74: ¹³C NMR spectra of compound 4r.

Figure S75: ¹H NMR spectra of compound 4s.

Figure S76: ¹³C NMR spectra of compound 4s.

Figure S77: ¹H NMR spectra of compound 4t.

Figure S78: ¹³C NMR spectra of compound 4t.

Figure S79: ¹H NMR spectra of compound 4u.

Figure S80: ¹³C NMR spectra of compound 4u.

Figure S81: ¹H NMR spectra of compound 4v.

Figure S82: ¹³C NMR spectra of compound 4v.

Figure S83: ¹H NMR spectra of compound 4w.

Figure S84: ¹³C NMR spectra of compound 4w.

Figure S85: ¹H NMR spectra of compound 4x.

Figure S86: ¹³C NMR spectra of compound 4x.

Figure S87. Selective 1D NOESY spectrum of 3a.

Figure S88. Selective 1D NOESY spectrum of 4b.

.

Figure S89. Selective 1D NOESY spectrum of 4l.

.

Figure S90. Selective 1D NOESY spectrum of 4n.

Figure S91. Selective 1D NOESY spectrum of 40.

Figure S92. Selective 1D NOESY spectrum of 4s.

Figure S93. Selective 1D NOESY spectrum of 4w.

Figure S94. X-ray Crystallographic Data of compound 3a.

Table 1. Crystal data and structure refinement for 3a.					
Identification code	3a				
Empirical formula	C19 H19 N O2				
Formula weight	293.35				
Temperature	150(2) K				
Wavelength	uvelength 0.71073 Å				
Crystal system	?				
Space group	?				
Unit cell dimensions	a = 8.0476(5) Å	α= 90°.			
	b = 8.1366(5) Å	β=94.493(2)°.			
	c = 23.2624(14) Å	$\gamma = 90^{\circ}$.			
Volume	1518.54(16) Å ³				
Ζ	4				
Density (calculated)	1.283 Mg/m ³				
Absorption coefficient	0.083 mm ⁻¹				
F(000)	624				
Crystal size	0.52 x 0.47 x 0.44 mm ³				
Theta range for data collection	3.06 to 26.39°.				
Index ranges	-10<=h<=10, -10<=k<=10, -29<=l<=29				
Reflections collected	38076				
Independent reflections	3106 [R(int) = 0.0286]				
Completeness to theta = 26.39°	99.8 %				
Max. and min. transmission	0.9644 and 0.9581				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	3106 / 0 / 199				
Goodness-of-fit on F ²	1.044				
Final R indices [I>2sigma(I)]	R1 = 0.0420, $wR2 = 0.1093$				
R indices (all data) $R1 = 0.0496, wR2 = 0.1178$					
Largest diff. peak and hole	0.214 and -0.287 e.Å ⁻³				

	Х	у	Z	U(eq)
O(1)	10301(1)	7651(1)	2488(1)	28(1)
O(2)	8110(2)	7033(1)	396(1)	40(1)
Ν	8189(1)	7388(1)	1756(1)	22(1)
C(1)	7471(2)	9053(2)	1709(1)	26(1)
C(2)	5852(2)	9063(2)	1999(1)	30(1)
C(3)	6119(2)	8485(2)	2614(1)	24(1)
C(4)	5036(2)	8932(2)	3029(1)	31(1)
C(5)	5326(2)	8426(2)	3596(1)	35(1)
C(6)	6703(2)	7458(2)	3760(1)	34(1)
C(7)	7761(2)	6977(2)	3351(1)	28(1)
C(8)	7485(2)	7489(1)	2779(1)	22(1)
C(9)	8667(1)	6937(2)	2350(1)	22(1)
C(10)	11153(2)	7306(2)	1985(1)	33(1)
C(11)	9778(2)	7243(2)	1476(1)	27(1)
C(12)	9779(2)	5648(2)	1136(1)	30(1)
C(13)	8602(2)	5718(2)	595(1)	28(1)
C(14)	8037(2)	4154(2)	305(1)	28(1)
C(15)	8648(2)	2617(2)	478(1)	39(1)
C(16)	8036(3)	1208(2)	199(1)	51(1)
C(17)	6800(2)	1328(2)	-246(1)	54(1)
C(18)	6189(3)	2842(2)	-427(1)	52(1)
C(19)	6814(2)	4246(2)	-153(1)	39(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for **3a**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

1.4305(17)
1.4506(14)
1.2190(17)
1.4520(16)
1.4736(15)
1.4841(15)
1.5135(18)
0.9900
0.9900
1.5057(18)
0.9900
0.9900
1.3987(18)
1.3951(17)
1.383(2)
0.9500
1.389(2)
0.9500
1.381(2)
0.9500
1.3958(18)
0.9500
1.5016(17)
1.0000
1.5557(19)
0.9900
0.9900
1.5202(18)
1.0000
1.515(2)
0.9900
0.9900
1.4951(19)
1.391(2)
1.394(2)

Table 3. Bond lengths [Å] and angles $[\circ]$ for **3a**.

C(15)-H(15A)	0.9500
C(16)-C(17)	1.382(3)
C(16)-H(16A)	0.9500
C(17)-C(18)	1.380(3)
C(17)-H(17A)	0.9500
C(18)-C(19)	1.384(2)
C(18)-H(18A)	0.9500
C(19)-H(19A)	0.9500
C(10) O(1) C(0)	102 01(0)
C(10) = O(1) = C(3)	102.91(9)
C(9) = N - C(1)	102.01(0)
C(9)-N- $C(11)$	102.91(9)
V(1) - N - C(11)	112.80(10) 108 56(10)
N - C(1) - C(2)	110.0
C(2) C(1) H(1A)	110.0
V(2) - C(1) - H(1A)	110.0
C(2) C(1) H(1B)	110.0
H(1A) C(1) H(1B)	108.4
$\Gamma(1X) - C(1) - \Pi(1D)$	110.4
C(3)-C(2)-H(2A)	109.4
C(1)-C(2)-H(2A)	109.4
C(3)-C(2)-H(2B)	109.4
C(1)-C(2)-H(2B)	109.4
H(2A)-C(2)-H(2B)	108.0
C(4)-C(3)-C(8)	118 74(12)
C(4)- $C(3)$ - $C(2)$	121.65(11)
C(8)-C(3)-C(2)	119.61(11)
C(5)-C(4)-C(3)	120.87(13)
C(5)-C(4)-H(4A)	119.6
C(3)-C(4)-H(4A)	119.6
C(4)-C(5)-C(6)	120.12(13)
C(4)-C(5)-H(5A)	119.9
C(6)-C(5)-H(5A)	119.9
C(7)-C(6)-C(5)	119.59(13)
C(7)-C(6)-H(6A)	120.2
C(5)-C(6)-H(6A)	120.2
C(6)-C(7)-C(8)	120.69(13)

C(6)-C(7)-H(7A)	119.7
C(8)-C(7)-H(7A)	119.7
C(7)-C(8)-C(3)	119.97(12)
C(7)-C(8)-C(9)	118.90(11)
C(3)-C(8)-C(9)	121.12(11)
O(1)-C(9)-N	106.17(10)
O(1)-C(9)-C(8)	110.05(10)
N-C(9)-C(8)	115.05(10)
O(1)-C(9)-H(9A)	108.5
N-C(9)-H(9A)	108.5
C(8)-C(9)-H(9A)	108.5
O(1)-C(10)-C(11)	105.75(10)
O(1)-C(10)-H(10A)	110.6
С(11)-С(10)-Н(10А)	110.6
O(1)-C(10)-H(10B)	110.6
С(11)-С(10)-Н(10В)	110.6
H(10A)-C(10)-H(10B)	108.7
N-C(11)-C(12)	109.39(10)
N-C(11)-C(10)	104.48(10)
C(12)-C(11)-C(10)	113.30(11)
N-C(11)-H(11A)	109.8
С(12)-С(11)-Н(11А)	109.8
С(10)-С(11)-Н(11А)	109.8
C(13)-C(12)-C(11)	112.00(11)
C(13)-C(12)-H(12A)	109.2
С(11)-С(12)-Н(12А)	109.2
C(13)-C(12)-H(12B)	109.2
С(11)-С(12)-Н(12В)	109.2
H(12A)-C(12)-H(12B)	107.9
O(2)-C(13)-C(14)	119.83(13)
O(2)-C(13)-C(12)	120.77(12)
C(14)-C(13)-C(12)	119.40(11)
C(15)-C(14)-C(19)	118.79(13)
C(15)-C(14)-C(13)	123.12(13)
C(19)-C(14)-C(13)	118.08(12)
C(14)-C(15)-C(16)	120.14(16)
C(14)-C(15)-H(15A)	119.9
C(16)-C(15)-H(15A)	119.9

C(17)-C(16)-C(15)	119.99(16)
C(17)-C(16)-H(16A)	120.0
C(15)-C(16)-H(16A)	120.0
C(18)-C(17)-C(16)	120.68(16)
C(18)-C(17)-H(17A)	119.7
C(16)-C(17)-H(17A)	119.7
C(17)-C(18)-C(19)	119.22(17)
C(17)-C(18)-H(18A)	120.4
C(19)-C(18)-H(18A)	120.4
C(18)-C(19)-C(14)	121.16(15)
C(18)-C(19)-H(19A)	119.4
C(14)-C(19)-H(19A)	119.4

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	18(1)	29(1)	36(1)	-5(1)	-2(1)	-1(1)
O(2)	56(1)	24(1)	40(1)	5(1)	1(1)	2(1)
N	20(1)	20(1)	26(1)	0(1)	3(1)	3(1)
C(1)	29(1)	23(1)	27(1)	4(1)	2(1)	7(1)
C(2)	25(1)	34(1)	30(1)	2(1)	1(1)	12(1)
C(3)	21(1)	23(1)	28(1)	-2(1)	1(1)	-1(1)
C(4)	24(1)	35(1)	34(1)	-5(1)	4(1)	2(1)
C(5)	36(1)	40(1)	32(1)	-8(1)	11(1)	-7(1)
C(6)	44(1)	31(1)	26(1)	1(1)	2(1)	-9(1)
C(7)	31(1)	22(1)	29(1)	1(1)	-4(1)	-4(1)
C(8)	21(1)	17(1)	26(1)	-2(1)	0(1)	-3(1)
C(9)	17(1)	18(1)	29(1)	-1(1)	-2(1)	0(1)
C(10)	20(1)	34(1)	44(1)	-4(1)	5(1)	2(1)
C(11)	22(1)	24(1)	34(1)	0(1)	8(1)	2(1)
C(12)	29(1)	27(1)	36(1)	-2(1)	8(1)	6(1)
C(13)	32(1)	25(1)	29(1)	2(1)	13(1)	2(1)
C(14)	34(1)	25(1)	27(1)	0(1)	15(1)	0(1)
C(15)	52(1)	28(1)	39(1)	0(1)	10(1)	7(1)
C(16)	76(1)	24(1)	55(1)	-2(1)	21(1)	4(1)
C(17)	67(1)	37(1)	58(1)	-20(1)	18(1)	-12(1)
C(18)	60(1)	48(1)	48(1)	-16(1)	1(1)	-2(1)
C(19)	51(1)	34(1)	32(1)	-3(1)	6(1)	4(1)

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for 5c.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + \dots + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	х	у	Z	U(eq)
H(1A)	7261	9363	1298	31
H(1B)	8258	9858	1898	31
H(2A)	5388	10191	1991	35
H(2B)	5035	8336	1784	35
H(4A)	4089	9591	2920	37
H(5A)	4581	8742	3873	42
H(6A)	6916	7128	4150	40
H(7A)	8687	6290	3461	33
H(9A)	8770	5714	2372	26
H(10A)	11745	6242	2025	39
H(10B)	11974	8181	1920	39
H(11A)	9906	8198	1213	32
H(12A)	10923	5423	1027	36
H(12B)	9446	4733	1382	36
H(15A)	9486	2532	788	47
H(16A)	8466	161	314	61
H(17A)	6367	359	-430	64
H(18A)	5348	2920	-736	63
H(19A)	6403	5290	-279	47

Table 5. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Å $^2x\;10^{\;3}$) for 5c.

Figure S95. X-ray Crystallographic Data of compound 31.

Table 6.Crystal data and structure refinement for 31.

Identification code	ic17273			
Empirical formula	C19 H18 Br N O2			
Formula weight	372.25			
Temperature	200(2) K			
Wavelength	1.54178 Å			
Crystal system	Orthorhombic			
Space group	Pbca			
Unit cell dimensions	a = 10.9980(5) Å	<i>α</i> = 90°.		
	b = 7.5779(3) Å	β= 90°.		
	c = 38.7212(13) Å	$\gamma = 90^{\circ}$.		
Volume	3227.1(2) Å ³			
Z	8			
Density (calculated)	1.532 Mg/m ³			
Absorption coefficient	3.545 mm ⁻¹			
F(000)	1520			
Crystal size	0.20 x 0.15 x 0.10 mm ³	0.20 x 0.15 x 0.10 mm ³		
Theta range for data collection	4.62 to 67.99°.	4.62 to 67.99°.		
Index ranges	-8<=h<=13, -9<=k<=8, -4	-8<=h<=13, -9<=k<=8, -46<=l<=42		
Reflections collected	6271			
Independent reflections	2903 [R(int) = 0.0402]	2903 [R(int) = 0.0402]		
Completeness to theta = 67.99°	99.0 %			
Absorption correction	Semi-empirical from equ	Semi-empirical from equivalents		
Max. and min. transmission	1.00000 and 0.77316	1.00000 and 0.77316		
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²		
Data / restraints / parameters	2903 / 0 / 208	2903 / 0 / 208		
Goodness-of-fit on F ²	0.934			
Final R indices [I>2sigma(I)]R1 = 0.0473, wR2 = 0.1262R indices (all data)R1 = 0.0718, wR2 = 0.1514Largest diff. peak and hole0.570 and -0.375 e.Å⁻³

	Х	У	Z	U(eq)
Br(1)	8533(1)	1435(1)	7296(1)	47(1)
O(1)	11746(2)	-1855(4)	8626(1)	33(1)
O(2)	12339(2)	-4706(4)	9600(1)	38(1)
N(1)	9893(3)	-2840(5)	8833(1)	29(1)
C(1)	9102(4)	637(6)	7734(1)	35(1)
C(2)	10007(4)	1564(7)	7901(1)	44(1)
C(3)	10420(4)	930(6)	8214(1)	41(1)
C(4)	9971(3)	-626(5)	8353(1)	31(1)
C(5)	10508(3)	-1320(5)	8685(1)	28(1)
C(6)	12042(3)	-2832(6)	8933(1)	32(1)
C(7)	10826(3)	-3609(5)	9063(1)	28(1)
C(8)	9514(5)	-4087(6)	8562(1)	46(1)
C(9)	8591(5)	-3242(7)	8329(1)	57(2)
C(10)	9057(4)	-1530(6)	8183(1)	37(1)
C(11)	8624(4)	-880(7)	7868(1)	37(1)
C(12)	10549(3)	-3151(5)	9440(1)	28(1)
C(13)	11477(3)	-3820(5)	9692(1)	29(1)
C(14)	11323(3)	-3339(5)	10067(1)	26(1)
C(15)	12247(3)	-3736(5)	10300(1)	30(1)
C(16)	12156(4)	-3235(6)	10643(1)	36(1)
C(17)	11125(4)	-2349(5)	10756(1)	33(1)
C(18)	10188(4)	-1994(5)	10532(1)	32(1)
C(19)	10288(3)	-2471(5)	10187(1)	30(1)

Table 7. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for **3l**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

$\mathbf{P}(1) \mathbf{Q}(1)$	1.00((4)
Br(1)- $C(1)$	1.906(4)
O(1)-C(5)	1.438(5)
O(1)-C(6)	1.437(5)
O(2)-C(13)	1.214(5)
N(1)-C(5)	1.454(5)
N(1)-C(8)	1.470(5)
N(1)-C(7)	1.480(5)
C(1)-C(11)	1.367(7)
C(1)-C(2)	1.381(6)
C(2)-C(3)	1.378(6)
C(3)-C(4)	1.388(6)
C(4)-C(10)	1.385(6)
C(4)-C(5)	1.507(5)
C(6)-C(7)	1.546(5)
C(7)-C(12)	1.530(5)
C(8)-C(9)	1.502(7)
C(9)-C(10)	1.506(6)
C(10)-C(11)	1.397(6)
C(12)-C(13)	1.500(5)
C(13)-C(14)	1.505(6)
C(14)-C(15)	1.392(5)
C(14)-C(19)	1.395(5)
C(15)-C(16)	1.383(6)
C(16)-C(17)	1.388(6)
C(17)-C(18)	1.374(6)
C(18)-C(19)	1.390(6)
C(5)-O(1)-C(6)	103.3(3)
C(5)-N(1)-C(8)	111.1(3)
C(5)-N(1)-C(7)	103.1(3)
C(8)-N(1)-C(7)	111.9(3)
C(11)-C(1)-C(2)	121.8(4)
C(11)-C(1)-Br(1)	118.6(3)
C(2)-C(1)-Br(1)	119.5(4)
C(3)-C(2)-C(1)	118.2(4)
C(2)-C(3)-C(4)	121.4(4)

Table 8. Bond lengths [Å] and angles $[\circ]$ for **31**.

C(3)-C(4)-C(10)	119.5(4)
C(3)-C(4)-C(5)	119.3(4)
C(10)-C(4)-C(5)	121.2(4)
O(1)-C(5)-N(1)	106.2(3)
O(1)-C(5)-C(4)	109.6(3)
N(1)-C(5)-C(4)	115.4(3)
O(1)-C(6)-C(7)	105.7(3)
N(1)-C(7)-C(12)	110.4(3)
N(1)-C(7)-C(6)	104.7(3)
C(12)-C(7)-C(6)	113.4(3)
N(1)-C(8)-C(9)	110.2(4)
C(10)-C(9)-C(8)	111.4(4)
C(11)-C(10)-C(4)	119.3(4)
C(11)-C(10)-C(9)	121.1(4)
C(4)-C(10)-C(9)	119.5(4)
C(1)-C(11)-C(10)	119.8(4)
C(13)-C(12)-C(7)	114.1(3)
O(2)-C(13)-C(12)	121.9(4)
O(2)-C(13)-C(14)	120.2(4)
C(12)-C(13)-C(14)	117.9(3)
C(15)-C(14)-C(19)	118.8(4)
C(15)-C(14)-C(13)	119.4(3)
C(19)-C(14)-C(13)	121.8(3)
C(14)-C(15)-C(16)	120.7(4)
C(17)-C(16)-C(15)	119.6(4)
C(18)-C(17)-C(16)	120.5(4)
C(17)-C(18)-C(19)	119.8(4)
C(18)-C(19)-C(14)	120.5(4)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	49(1)	63(1)	29(1)	7(1)	-2(1)	12(1)
O(1)	30(1)	38(2)	31(1)	5(1)	6(1)	-1(1)
O(2)	35(2)	43(2)	35(2)	-1(1)	1(1)	10(1)
N(1)	30(2)	36(2)	23(2)	0(1)	-1(1)	-8(2)
C(1)	35(2)	50(3)	20(2)	2(2)	0(2)	16(2)
C(2)	48(3)	42(3)	41(2)	7(2)	-2(2)	-4(2)
C(3)	47(2)	37(2)	38(2)	2(2)	-10(2)	-4(2)
C(4)	31(2)	33(2)	28(2)	-2(2)	4(2)	1(2)
C(5)	29(2)	30(2)	26(2)	-4(2)	4(2)	-3(2)
C(6)	29(2)	35(2)	33(2)	5(2)	5(2)	4(2)
C(7)	33(2)	27(2)	24(2)	-1(2)	3(2)	-1(2)
C(8)	65(3)	37(3)	36(2)	8(2)	-9(2)	-28(2)
C(9)	60(3)	69(4)	41(3)	15(3)	-19(2)	-35(3)
C(10)	36(2)	46(3)	27(2)	1(2)	2(2)	-6(2)
C(11)	31(2)	52(3)	28(2)	-5(2)	-1(2)	-3(2)
C(12)	28(2)	32(2)	26(2)	0(2)	3(2)	-2(2)
C(13)	28(2)	28(2)	31(2)	3(2)	3(2)	-9(2)
C(14)	27(2)	22(2)	31(2)	5(2)	2(2)	-5(2)
C(15)	24(2)	33(2)	31(2)	5(2)	1(2)	-2(2)
C(16)	36(2)	42(2)	29(2)	8(2)	-3(2)	-2(2)
C(17)	40(2)	30(2)	28(2)	4(2)	2(2)	-1(2)
C(18)	32(2)	30(2)	34(2)	1(2)	7(2)	2(2)
C(19)	26(2)	33(2)	29(2)	3(2)	-1(2)	-1(2)

Table 9.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for **31**.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + \dots + 2 \ h \ k \ a^* \ b^* \ U^{12}$]