Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

N-, P- and B-doped Mesoporous Carbons for Direct Dehydrogenation of Propane

Yuejun Song,^{1,2} Guishu Liu,^{1,2} Zhong-Yong Yuan^{1,2,#}

¹ National Institute for Advanced Materials, School of Materials Science and

Engineering, Nankai University, Tongyan Road 38, Haihe Educational Park, Tianjin 300353, China

² Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative

Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Weijin Road

94, Tianjin 300071, China

[#] Corresponding author. Email: zyyuan@nankai.edu.cn

1. Experimental Section.

1.1 Materials

All the chemical reagents used below were purchased from Tianjin Guangfu Fine Chemical Research Institute Co., Ltd and used without any purification further.

1.2 Catalyst preparation

Preparation of oxidic NMC (NMC-o). The prepared NMC was oxidized by nitric acid. Typically, NMC was oxided NMC in 10 mol/L nitric acid for 8 h, then washed with deionized water to neutal. After drying at 80 °C, the resulted produce was marked as NMC-o.

Preparation of N-doped mesoporous carbon by melamine (NMC-m). As reported by Zhao's group with some adjustment.[1] 1 g mesoporous carbon was put into a 100 ml solution with 10 g melamine at 80 °C under stirring for 8 h. After water evaporated, the precipitate was dried in oven at 100 °C and heated up to 750 °C at 2.5 °C/min and kept for 1 h in a N₂ atmosphere. The obtained product was denoted as NMC-m.

Preparation of N-doped mesoporous carbon by urea (NMC-u). The N-doped mesoporous carbon were synthesized by in-situ approach.[2] 1.41 g phenol, 0.45 g urea and 0.03 g sodium hydroxide were dissolved in 3 mL water under stirring, and then 2.5 g formaldehyde (37%) was added drop-wise. After heating up to 90 °C slowly and held 30 min, a phenol-urea-formaldehyde (PUF) resin was prepared. The obtained PUF resin was dissolved in 40 mL mixture of ethanol and water (V_{ethanol} : $V_{\text{water}} = 1:1$), then 2.5 g F127 added into the above solution under stirring. When F127

dissolved completely, ~ 2 g HCl (37%) were used to adjust the pH value of the mixture to ~ 2.0. The mixture continues to be stirred at 50 °C for 12 h, then evaporating the solvent under vacuum environment at 50 °C. The obtained gel-like precipitate further aged at 100 °C for another 24 h, followed by calcination to 600 °C at 1 °C/min for 3 h under nitrogen atmosphere. The obtained product was labeled as NMC-u.

2. Supplementary Figures and Tables

Fig. S1 N₂ sorption isotherms (a) and the corresponding pore size distribution curves (b) of the Ndoped carbons.

Fig. S2 N₂ sorption isotherms (a) and the corresponding pore size distribution curves (b) of all the used carbon catalysts.

Fig. S3 Propane conversion and propene selectivity in propane dehydrogenation over N-doped mesoporous carbons.

Fig. S4 High-resolution XPS O 1s spectra of N-doped carbons (a), and N 1s spectra of NMC-o (b), NMC-m (d) and NMC-u (f).

Fig. S5 TPD profiles of N-doped carbons.

Fig. S6 Raman spectra of N-doped carbons.

Samples	S_{BET} (m ² /g)	V _{total} (cm ³ /g)	D _{pore} (nm)	TOF (mmol/g/h)	Initial conversion (%)	Initial selectivity (%)	
NMC-o	844 (813) ^a	0.80	5.8	38.3	22.1	84.9	
NMC-m	649 (395)	0.68	5.7	48.4	23.7	82.2	
NMC-u	502 (171)	0.46	_	34.2	20.7	87.1	

Table S1 Textural properties and specific catalytic activities of N-doped carbons.

^a Data in the parentheses are corresponding to the used catalysts after 24 h of propane dehydrogenation reaction.

	0						Ν					Р			В		
catalysts	Total (at%)	C=O (at%)	O=C-O (at%)	C-OH (at%)	Wate r	Total (at%)	Pyridinic N (at%)	Pyrrolic N (at%)	Graphitic N (at%)	oxidized N (at%)	Total (at%)	P-C bond (at%)	PO ₄ tetrahedra (at%)	Total (at%)	C-(BO ₃) _n bond (at%)	graphitic-B (at%)	
MC	10.33	0.95	2.86	6.21	0.31	-	-	-	_	-	-	-	-	-	-	-	
BMC	9.89	1.29	3.46	4.70	0.44	-	-	-	-	-	-	-	-	0.20	0.11	0.09	
PMC	7.19	1.68	1.50	3.34	0.66	_	_	-	-	_	0.31	0.18	0.13	-	_	-	
NMC	4.92	0.48	2.99	1.11	0.34	5.98	2.23	1.87	1.25	0.61	-	-	-	-	_	-	
NMC-o	7.07	1.22	2.51	2.52	0.83	6.98	1.37	3.70	0.77	1.13	-	-	-	-	_	-	
NMC-m	4.90	0.85	1.43	2.27	0.35	7.00	4.41	0.91	0.56	1.12	-	-	-	-	-	-	
NMC-u	8.98	1.30	3.03	3.86	0.78	2.35	0.64	1.71	_	-	-	-	-	-	_	-	

Table S2 Relative integrated intensity of deconvoluted O 1s, N 1s, P 2p and B 1s XPS spectra for all mesoporous carbons.

Reference

- [1] Z. Zhao, Y. Dai, G. Ge, X. Guo, G. Wang, Phys. Chem. Chem. Phy., 2015, 17, 18895-18899.
- [2] M. Xie, Y. Xia, J. Liang, L. Chen, X. Guo, Micropor. Mesopor., 2014, 197, 237-243.