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I. Synthesis of ligands L1 and L2 

Br Br

R R

+ N NH
CuI, Cs2CO3

N N

R R
N N

DMF, 120 °C

A L

Under N2, a mixture of A (10 mmol), imidazole (22 mmol), Cs2CO3 (40 mmol) and CuI (2 mmol) in fresh 

DMF (10 mL) was heated at 120°C for 8 hours (monitored by TLC). Then the reaction system was poured 

to large amounts of water. The crude product was purified by column chromatography using 

dichloromethane : ethyl acetate = 1 : 1 (v/v) as eluent. All the ligands were obtained as light yellow 

crystalline solids. The detailed characterized data were given as following.

For L1 (R = methyl) Yield: 76%. IR (KBr pellet cm-1): 3087(w), 2945(w), 2917(w), 2852(w), 1613(w), 

1584(s), 1490(s), 1312(m), 1250(m), 1089(w), 1052(s), 976(w), 903(w), 813 (s), 763(m), 732(s), 655(s), 

627(m). 1H NMR (300 MHz, CDCl3, 25°C, TMS): δ = 8.05 (s, 2H, -C3H3N2), 7.83 (d, J = 8.0 Hz, 2H, -C6H3-), 

7.46 (d, J = 1.7 Hz, 2H, -C3H3N2), 7.43 (d, J = 1.9 Hz, 2H, -C3H3N2), 7.40 (d, J = 1.9 Hz, 2H, -C6H3-), 7.36 (s, 2H, 

-C6H3-), 1.58 (s, 6H, -CH3). Elemental analysis (%) calcd for C21H18N4: C 77.27, H 5.56, N 17.17; Found: C 

77.61, H 5.47, N 17.11. 

For L2 (R = ethyl) Yield: 68%. IR (KBr pellet cm-1): 3107(w), 2957(w), 2924(w), 2867(w), 1674(w), 

1613(m), 1498(s), 1370(m), 1255(s), 1104(m), 1056(s), 982(w), 900(m), 812 (s), 732(s), 653(s), 615(m), 

533(m), 494(m). 1H NMR (300 MHz, CDCl3, 25°C, TMS): δ = 8.18 (s, 2H, -C3H3N2), 7.83 (d, J = 7.2 Hz, 2H, -

C6H3-), 7.46 (d, J = 2.0 Hz, 2H, -C3H3N2), 7.43 (d, J = 2.0 Hz, 2H, -C3H3N2), 7.42 (d, J = 1.4 Hz, 2H, -C6H3-), 

7.31 (s, 2H, -C6H3-), 2.13 (q, 4H, J = 7.3 Hz, -CH2-), 0.40 (t, J = 7.3 Hz, 6H, -CH3). Elemental analysis (%) calcd 

for C23H22N4: C 77.94, H 6.26, N 15.81; Found: C 78.31, H 6.09, N 16.23. 

II. Stability of 1 in various organic solvents

1 is stable in common organic solvent systems, such as toluene, CHCl3, THF, cyclohexane, CH3CN and 

acetone (Fig. S1).
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Fig. S1 The XRPD patterns of 1 after it was stirred in toluene, CHCl3, THF, cyclohexane, CH3CN and acetone 
for 10 h at room temperature. 

III. ORTEP figures of 1-2

Fig. S2 The ORTEP figure of [(CuL1)(CuBr2)] (1).

Fig. S3 The ORTEP figure of [(CuL2)2(Cu2Br4)] (2).

IV. XRPD patterns of the as-synthesized and recovered 1.

1. XRPD patterns for as-synthesized and simulated 1 and its XPS spectrum
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Fig. S4 Left: XRPD patterns of as-synthesized and simulated 1. Right: XPS spectrum of 1. 

2. XRPD patterns of 1 for phenol acetylation

Fig. S5 XRPD patterns of as-synthesized and recovered 1.

3. XRPD patterns of 1 for A3-coupling (aldehyde-alkyne-amine)

Fig. S6 XRPD patterns of as-synthesized and recovered 1.

4. XRPD patterns of 1 for styrene oxide methanolysis
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Fig. S7 XRPD patterns of as-synthesized and recovered 1.

V. Characterization of the products of the catalytic reactions

1. Phenol acetylation

 
Br OAc

1H NMR (300 MHz, CDCl3):  = 7.51 (d, J = 11.7 Hz, 2H), 7.00 (d, J = 8.7 Hz, 2H), 2.31 (s, 3H). 13C NMR 

(75MHZ, CDCl3):  = 21.02, 118.87, 123.37, 132.45, 149.73, 169.02. MS-EI, m/z, Anal. Calcd: 236.95, Exp: 

236.97, [M+Na]+.

I OAc

1H NMR (300 MHz, CDCl3):  = 7.70 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 2.31 (s, 3H). 13C NMR 

(75MHZ, CDCl3):  = 21.08, 89.82, 123.78, 138.47, 150.55, 168.98. MS-EI, m/z, Anal. Calcd: 284.94, Exp: 

284.93, [M+Na]+.

H3C OAc

1H NMR (300 MHz, DMSO-d6):  = 7.04 (d, J = 9.0 Hz, 2H), 6.95 (d, J = 11.7 Hz, 2H), 3.75 (s, 3H), 2.23 (s, 3H). 

13C NMR (75MHZ, DMSO-d6):  = 20.78, 21.23, 121.90, 130.22, 135.30, 148.81, 169.68. MS-EI, m/z, Anal. 

Calcd: 173.06, Exp: 173.05, [M+Na]+.

H3CO OAc

1H NMR (300 MHz, DMSO-d6):  = 7.20 (d, J = 8.3 Hz, 2H), 6.99 (d, J = 8.3 Hz, 2H), 2.30 (s, 3H), 2.24 (s, 3H). 

13C NMR (75MHZ, DMSO-d6):  = 21.12, 55.82, 114.82, 123.00, 144.43, 157.30, 169.88. MS-EI, m/z, Anal. 

Calcd: 189.05, Exp: 189.05, [M+Na]+.
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O2N OAc

1H NMR (300 MHz, CDCl3):  = 8.29 (d, J = 7.3 Hz, 2H), 7.30 (d, J = 9.1 Hz, 2H), 2.37 (s, 3H). 13C NMR 

(75MHZ, CDCl3):  = 21.07, 122.43, 125.18, 145.34, 155.39, 168.34. MS-EI, m/z, Anal. Calcd: 204.03, Exp: 

204.02, [M+Na]+.

OAc

1H NMR (300 MHz, DMSO-d6):  = 8.05-7.82 (m, 3H), 7.67 (s, 1H), 7.53 (s, 2H), 7.31 (d, J = 8.9 Hz, 1H), 2.33 

(s, 3H). 13C NMR (75MHZ, DMSO-d6): δ = 21.30, 118.97, 122.09, 126.21, 127.10, 127.92, 128.13, 129.73, 

131.49, 133.86, 148.74, 169.82. MS-EI, m/z, Anal. Calcd: 209.06, Exp: 209.05, [M+Na]+.

2. A3-coupling (aldehyde-alkyne-amine)

N

1H NMR (400 MHz, DMSO-d6): δ =7.49 – 7.39 (m, 2H), 7.39 – 7.30 (m, 3H), 3.45 (s, 2H), 2.49 (d, J = 15.5 Hz, 

4H), 1.64 – 1.43 (m, 4H), 1.38 (d, J = 5.2 Hz, 2H). 13C NMR (75MHz, DMSO-d6): δ = 23.86, 25.63, 47.79, 

52.79, 85.16, 86.32, 123.04, 128.56, 128.82, 131.36. MS-EI , m/z, Anal. Calcd: 199. 14, Exp: 200. 13, (M+).

H3C
N

1H NMR (300 MHz, DMSO-d6): δ = 7.31 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 7. 9 Hz, 2H), 3. 43 (s, 2H), 2.47 (d, J = 

13.5 Hz, 4H), 2.30 (s, 3H), 1.52 (d, J = 5.1 Hz, 4H), 1. 37 (s, 2H). 13C NMR (75MHZ, DMSO-d6): δ = 21.00, 

23.75, 25.54, 48.09, 52.77, 84.71, 85.53, 119.99, 129.61, 131.68, 138.20. MS-EI, m/z, Anal. Calcd: 213.15, 

Exp: 214.15, (M+).

H3CO
N

1H NMR (300 MHz, DMSO-d6): δ =7. 35 (d, J = 8.7 Hz, 2H), 6.91 (d, J = 8.7 Hz, 2H), 3.76 (s, 3H), 3.41 (s, 2H), 

2.45-2.43 (d, J = 5.1 Hz, 4H), 1.52 (d, J = 10.6 Hz, 4H), 1.36 (d, J = 4.8Hz, 2H). 13C NMR (75MHz, DMSO-d6): δ 

= 24.00, 26.02, 47.91, 52.99, 55.26, 84.42, 84.66, 114.61, 115.22, 133.26, 159.56. MS-EI, m/z, Anal. Calcd: 

229. 15, Exp: 230. 15, (M+).
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Cl
N

1H NMR (300 MHz, DMSO-d6): δ = 7.45-7.39 (m, 4H), 3.44 (s, 2H), 2.50-2.44 (m, 4H), 1.53-1.49 (m, 4H), 

1.37 (d, J=5.1, 2H). 13C NMR (75MHZ, DMSO-d6): δ = 23.88, 25.52, 48.05, 53.11, 83.88, 87.29, 121.78, 

129.01, 133.29. MS-EI, m/z, Anal. Calcd: 233. 10, Exp: 234. 10, (M+).

N

1H NMR (300 MHz, DMSO-d6): δ = 7.40 (s, 2H), 7.36 (d, J = 3.3Hz, 3H), 3.05 (d, J = 10.2Hz, 1H), 2.56-2.50 (m, 

4H), 1.85(s, 1H), 1.54 (d, J = 4.8Hz, 4H), 1.41 (d, J=5.7Hz, 2H), 1.06 (d, J = 6.6Hz, 3H), 0.97 (d, J = 6.6Hz, 2H). 

13C NMR (75MHZ, DMSO-d6): δ = 20.76, 24.57, 26.32, 30.03, 50.68, 64.98, 86.31, 87.97, 123.15, 128.38, 

128.99, 131.63. MS-EI, m/z, Anal. Calcd: 242. 19, Exp: 242. 18, (M+).

N

1H NMR (400 MHz, DMSO-d6): δ = 7.41-7.40 (m, 2H), 7.36-7.35 (m, 3H), 3.16 (d, J = 10.2 Hz, 1H), 2.54 (S, 

2H), 2.36 (s, 2H), 2.02-1.96 (m, 2H), 1.73-1.67 (m, 2H), 1.61-1.51 (s, 6H), 1.39 (s, 2H), 1.27 – 1.1.23 (m, 3H), 

1.20-1.15(m, 2H). 13C NMR (75MHZ, DMSO-d6): δ = 24.61, 25.83, 26.30, 26.75, 29.88, 31.15, 50.36, 63.76, 

86.51, 88.05, 110.60, 123.56, 128.31, 129.07, 131.93. MS-EI, m/z, Anal. Calcd: 282.22, Exp: 282. 21, (M+).

N

O

1H NMR (400 MHz, DMSO-d6): δ = 7.43 (s, 2H), 7.37 (d, J = 3.6 Hz, 3H), 3.70 – 3.55 (m, 4H), 3.51 (s, 2H), 

2.58 – 2.46 (m, 4H). 13C NMR (75MHZ, DMSO-d6): δ = 47.29, 51.95, 63.41, 66.64, 85.05, 85.61, 122.85, 

128.67, 129.06, 13.69. MS-EI, m/z, Anal. Calcd: 202. 12, Exp: 202. 12, (M+).

N

N
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1H NMR (400 MHz, DMSO-d6): δ = 7.42 (s, 2H), 7.39 (d d, J = 22.0, 7.0 Hz, 2H), 7.36 (d, J = 3.5 Hz, 1H), 3.46 

(d, J = 26.2 Hz, 2H), 2.59 – 2.50 (m, 4H), 2.35 (s, 4H), 2.16 (s, 3H). 13C NMR (75MHZ, DMSO-d6): δ = 46.19, 

46.93, 51.77, 55.04, 85.22, 86.00, 123.13, 128.59, 128.59, 129.12, 131.63. MS-EI, m/z, Anal. Calcd: 215. 15, 

Exp: 215. 15, (M+).

3. Styrene oxide methanolysis
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Fig. S8 GC-MS spectra for styrene oxide methanolysis and the product 2-methoxy-2-phenylethanol, and 
the GC spectra for methanolysis of the extended epoxide substrates (the conversion rate is 
determined by GC using nitrobenzene as the external standard).1 

VI. XPS and ICP measurements for 1 after catalysis

1. XPS and ICP measurements for 1 after Phenol acetylation

O2N OH + Ac2O CH2Cl2 , r.t.
O2N OAc

1 (5 % mol)

The p-nitrophenol acetylation was chosen as the model reaction for examination the stability of 1 during 

phenol acetylation. Acetic anhydride (4 mmol) was added to a CH2Cl2 (1 mL) solution of p-nitrophenol 

(139 mg, 1 mmol). After addition of 1 (5 % mol), the mixture was stirred at room temperature for 3 h 

(monitored by TLC, petroleum/CH2Cl2 = 1 : 1). 1 was recovered by centrifugation, washed with MeOH and 

dried at 80C. The recovered 1 was measured by ICP. The results indicated that the leaching loss of copper 

and Br is 0.16 and 0.78 %, respectively (Table S1). XPS spectra of 1 after the reaction indicated that no 

valence change occurred (Fig. S9). 

Table S1. ICP results for 1 after p-nitrophenol acetylation

sample type
Cu 

324.754
Cu 

224.700
Cu 

327.396
Br 

163.340
1 0.42477 0.40192 0.38598 2.84309
2 0.42046 0.39523 0.39367 2.16295

<x> 0.42262 0.39858 0.38982 2.50302
sd 0.00305 0.00473 0.00544 0.48093

1 after 
Phenol 

acetylation

rsd 0.721 1.187 1.395 19.214
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Fig. S9 XPS spectra for copper and bromine in 1 after p-nitrophenol acetylation.

2. XPS and ICP measurements for 1 after A3-coupling (aldehyde-alkyne-amine) reaction

+
H H

O
+

N2 , r.t. , solvent freeHN
N

1 (5 % mol)

Above A3-coupling (aldehyde-alkyne-amine) reaction was chosen as the model reaction for examination 

the stability of 1 during phenol acetylation. 

A mixture of phenylacetylene (120 mg, 1.2 mmol), paraformaldehyde (PFA, 30 mg, 1.0 mmol), 

piperidine (94 mg, 1.1 mmol) and 1 (5 % mol) was stirred at room temperature in nitrogen atmosphere for 

6 h (monitored by TLC). After addition of ether, the product was purified by column chromatography on 

silica gel (hexane/ethyl acetate = 3 : 1). 1 was recovered by centrifugation and washed with ether and 

MeOH and dried at 80C. The recovered 1 was measured by ICP. The results indicated that the leaching 

loss of copper and Br is 1.12 and 3.28 %, respectively (Table S2). XPS spectra of 1 after the reaction 

indicated that no valence change occurred (Fig. S10).

Table S2. ICP results for 1 after phenylacetylene, paraformaldehyde and piperidine A3-coupling reaction

sample type
Cu 

324.754
Cu 

224.700
Cu 

327.396
Br 

163.340
1 2.81692 2.88024 2.83875 9.95547
2 2.82294 2.88681 2.78428 11.0601

<x> 2.81993 2.88353 2.81152 10.5078
sd 0.00426 0.00465 0.03852 0.78109

1 after A3-
coupling 
reaction

rsd 0.151 0.161 1.37 7.433
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Fig. S10 XPS spectra for copper and bromine in 1 after phenylacetylene, paraformaldehyde and piperidine 

A3-coupling reaction.

3. XPS and ICP measurements for 1 after styrene oxide methanolysis

O
MeOH, 1 (2 % mol)

50°C, 7h

OMe
OH

Styrene oxide methanolysis was chosen as the model reaction for examination the stability of 1 during 

methanolysis.

A methanol (5 mL) solution of styrene oxide (1 mmol) and 1 (0.02 mmol, 2 mol %) was stirred at 50°C 

for 7 hours. The reaction was monitored by TLC. After that, the catalyst of 1 was recovered by 

centrifugation and washed by fresh methanol. After dried at 70°C for 1 hour, the recovered 1 was 

measured by ICP and XPS. The recovered 1 was measured by ICP. The results indicated that the leaching 

loss of copper and Br is 1.12 and 3.28 %, respectively (Table S3). XPS spectra of 1 after the reaction 

indicated that no valence change occurred (Fig. S11).

Table S3. ICP results for 1 after styrene oxide methanolysis

sample type
Cu 

324.754
Cu 

224.700
Cu 

327.396
Br 

163.340
　 　 mg/l mg/l mg/l mg/l

1 0.06576 0.03852 0.03641 < 0.06448
2 0.06217 0.03698 0.03356 < 0.07137

<x> 0.06397 0.03775 0.03498 < 0.06792
sd 0.00254 0.00109 0.00202 0.00487

1 after styrene 
oxide methanolysis

rsd 3.976 2.882 5.769 7.171
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Fig. S11 XPS spectra for copper and bromine in 1 after styrene oxide methanolysis.

VII. Selected bond lengths and bond angles of 1-2

Table S4. Selected bond lengths [Å] and angles [°] for 1

Br(1)-Cu(2) 2.2345(8) Br(2)-Cu(2) 2.2292(8)

Cu(1)-N(4)#1                  1.884(3) Cu(1)-N(1)                    1.885(3)

Cu(1)-Cu(2)                   2.8717(8) N(4)-Cu(1)#2 1.884(3)

N(4)#1-Cu(1)-N(1)           169.82(17) N(4)#1-Cu(1)-Cu(2)           92.29(12)

N(1)-Cu(1)-Cu(2)             95.72(12) Br(2)-Cu(2)-Br(1)           174.50(4)

Br(2)-Cu(2)-Cu(1)            85.52(3) Br(1)-Cu(2)-Cu(1)            99.35(3)
Symmetry transformations used to generate equivalent atoms: 
#1 x+1,-y+3/2,z+3/2    #2 x-1,-y+3/2,z-3/2

Table S5. Selected bond lengths [Å] and angles [°] for 2

Br(1)-Cu(2)                   2.3258(15) Br(1)-Cu(1)                   2.7581(14)

Br(2)-Cu(2)#1                                   2.4034(16) Br(2)-Cu(2)                                       2.4171(14)

Cu(1)-N(4)#2                                     1.89(3) Cu(1)-N(1)                    1.906(5)

Cu(1)-N(4')#2                           1.93(2) Cu(2)-Br(2)#1                           2.4034(16)

Cu(2)-Cu(2)#1                             2.709(2) N(4)-Cu(1)#3                             1.89(3)

N(4')-Cu(1)#3                            1.93(2) Cu(2)-Br(1)-Cu(1)                       80.56(4)

Cu(2)#1-Br(2)-Cu(2)          68.37(5) N(4)#2-Cu(1)-N(1)           157.7(10)

N(4)#2-Cu(1)-N(4')#2         10.7(13) N(1)-Cu(1)-N(4')#2          160.3(6)

N(4)#2-Cu(1)-Br(1)          101.3(9) N(1)-Cu(1)-Br(1)             98.64(17)
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N(4')#2-Cu(1)-Br(1)         101.0(6) Br(1)-Cu(2)-Br(2)#1         127.51(5)

Br(1)-Cu(2)-Br(2)           120.81(6) Br(2)#1-Cu(2)-Br(2)         111.63(5)

Br(1)-Cu(2)-Cu(2)#1         175.85(7) Br(2)#1-Cu(2)-Cu(2)#1        56.05(5)

Br(2)-Cu(2)-Cu(2)#1          55.57(4)
Symmetry transformations used to generate equivalent atoms: 

#1 -x+2,-y+3,-z+1    #2 x+1,y+1,z    #3 x-1,y-1,z
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