Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Molecular Engineering of New Phenothiazine-based

D-A-π-A Dyes for Dye-Sensitized Solar Cells

Xiaofeng Zhang, ^a Faliang Gou, ^a Jian Shi, ^a Hong Gao, ^a Zhenping Zhu* ^b and Huanwang Jing* ^{ab}
^a State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical
Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
^b State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences,
Taiyuan, Shanxi 030001, China

Corresponding Authors.

*Huanwang Jing. E-mail: hwjing@lzu.edu.cn. Fax: 86-351-4048433. Tel: 86-931-8912585.

*Zhenping Zhu. E-mail: zpzhu@sxicc.ac.cn. Fax: 86-351-4048715. Tel: 86-931-8912585

Experimental section

Synthesis and characterization of dyes.

Figure S1 Synthetic routs of intermediates. (a) $SOCl_2$, NEt_3 , CH_2Cl_2 ; (b) Br_2 , HBr

(aq); (c) bis(pinacolato)diboron, Pd(PPh₃)₂Cl₂, KOAc, toluene; (d) Pd(PPh₃)₄, K₂CO₃, DME/H₂O; (e) NaH, n-BuBr, THF; (f) NBS, THF; (g) NBS, THF; (h) Pd₂(dba)₃, ^tBu₃P, ^tBuOK, diphenylamine, 1,4-dioxane; (i) NBS, DMF; (j) bis(pinacolato)diboron, Pd(PPh₃)₂Cl₂, KOAc, toluene; (k) Pd(PPh₃)₄, K₂CO₃, DME/H₂O; (l) n-C₆H₁₃Br, K₂CO₃, acetone; (m) bis(pinacolato)diboron, Pd(PPh₃)₂Cl₂, KOAc, toluene; (n) Pd(PPh₃)₄, K₂CO₃, DME/H₂O; (o) DMF, POCl₃, CH₂Cl₂; (p) cyanoacetic acid, piperidine, CHCl₃.

Dye of **T2-1**, compound **2**, **3**, **5**, **6**, **8**, **A-1**, **9**, **11**, **12**, **14**, **15** and **16** were synthesized according to literatures. Their H NMR spectra were consistent with that in references. The synthetic procedures and NMR data for other intermediates and new dyes are detailed as follows.

Preparation of A-2~4

A-2⁴: Under argon, 3,7-dibromo-10-butyl-10H-phenothiazine (compound 9) (6.20 g, 15 mmol), $Pd_2(dba)_3$ (41.2 mg, 0.045mmol), $HP(t-Bu)_3BF_4$ (43.5 mg, 0.15mmol), and tBuOK (1.00 g, 9mmo) were dissolved in dry 1,4-dioxane (50 mL). The reaction mixture was stirred at 70 °C for 5 minutes and then diphenylamine (0.51 g, 3 mmol) was added and the mixture was heated to 105 °C for 14 h. After cooling to room temperature, solvents were removed by rotary evaporation. The residue was purified using column chromatography to give a pale green solid (1.00 g, 66.8 %). 1H NMR (300 MHz, Acetone-d₆): δ 7.33 (dd, J = 6.9, 1.8 Hz, 1 H), 7.27 (m, 5 H), 7.00 (m, 7 H), 6.93 (2 H, m), 6.85 (1 H, d, J = 2.4 Hz), 3.91 (t, J = 7.2 Hz, 2 H), 1.77 (m, 2

H), 1.47 (m, 2 H), 0.93 (t, J = 7.2 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ 147.82, 144.65, 143.09, 140.76, 130.03, 129.79, 129.36, 126.84, 125.22, 124.34, 124.21, 123.63, 122.55, 116.51, 116.09, 114.34, 47.39, 29.06, 20.35, 14.03.

A-3: Compound 12 (0.63 g, 1.7 mmol) was treated with 9 (2.81 g, 6.8 mmol) in the presence of Pd(PPh₃)₄ (0.10 g, 0.08 mmol), 1 N aqueous solution of K₂CO₃ (2.5 mL) and 1,2-dimethoxyethane (22.5 mL). The mixture was degassed for three times and refluxed for 48 h. After cooling and addition of AcOEt (50 mL), the mixture was washed with water and dried on magnesium sulfate. Solvents were removed by rotary evaporation and the residue was purified by silica gel column chromatography with petroleum ether:AcOEt (10:1, v:v) as eluent to give A-3 as a pale yellow oil (0.64 g, 67.2%). ¹H NMR (300 MHz, Acetone-d₆): δ 7.48 (dd, J = 6.9, 2.4 Hz, 2H), 7.41 (dd, J = 8.1, 2.4 Hz, 1H), 7.35 (d, J = 2.4 Hz, 1H), 7.27 (m, 6H), 7.03 (m, 9H), 6.88 (d, J = 8.7 Hz, 1H), 3.88 (t, J = 6.9 Hz, 2H), 1.73 (m, 2H), 1.44 (m, 2H), 0.89 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, Acetone-d₆): δ 148.57, 147.91, 145.42, 144.61, 135.89, 134.47, 130.95, 130.29, 130.04, 127.95, 127.62, 126.52, 125.75, 125.20, 125.10, 124.67, 123.97, 117.99, 117.03, 114.78, 47.67, 29.55, 20.63, 14.14.

A-4: Compound **12** (0.61 g, 2 mmol) was treated with **9** (4.13 g, 10 mmol) in the presence of Pd(PPh₃)₄ (115.6 mg, 0.1 mmol), 1 N aqueous solution of K₂CO₃ (5 mL) and 1,2-dimethoxyethane (45 mL). The mixture was degassed for three times and refluxed for 48 h. After cooling and addition of AcOEt (80 mL), the mixture was washed with water and dried on magnesium sulfate. Solvents were removed by rotary evaporation and the residue was purified by silica gel column chromatography with

petroleum ether:AcOEt (10:1, v:v) as eluent to give **A-4** as a pale yellow oil (0.69 g, 67.5%). ¹H NMR (300 MHz, Acetone-d₆): δ 7.54 (dd, J = 6.9, 2.4 Hz, 2H), 7.44 (dd, J = 8.7, 2.4 Hz, 1H), 7.37 (d, J = 2.1 Hz, 1H), 7.31 (m, 2H), 7.08 (d, J = 8.1 Hz, 1H), 6.97 (m, 3H), 4.02 (t, J = 6.6 Hz, 2H), 3.95 (t, J = 6.9 Hz, 2H), 1.78 (m, 4H), 1.49 (m, 4H), 1.36 (m, 4H), 0.92 (m, 6H).

General synthetic procedure for compounds B-n⁷⁻⁸

A mixture of **A-n** (1.0 mmol), bis(pinacolato)diboron (0.31 g, 1.2 mmol), Pd(PPh₃)₂Cl₂ (17.8 mg, 25 μmol) and KOAc (0.30 g, 3 mmol) in dry toluene (25 mL) was heated to 120 °C under argon for 12 h. After cooling, the solvents were evaporated in vacuum. The residue was chromatographed with petroleum ether: AcOEt (10:1, v:v) to give **B-n** as a pale green oil.

B-1: 0.36 g, yield 94.5%. ¹H NMR (300 MHz, DMSO-d₆): δ 7.49 (d, J = 8.1 Hz, 1H), 7.36 (s, 1H), 7.20 (t, J = 7.2 Hz, 1H), 7.13 (d, J = 7.8 Hz, 1H), 7.02 (m, 2H), 6.98 (t, J = 7.2 Hz, 1H), 3.84 (t, J = 6.9 Hz, 2H), 1.68 (m, 2H), 1.31 (s, 12 H), 0.92 (t, J = 7.8 Hz, 3H).

B-2: 0.47 g, yield 86.7 %. ¹H NMR (300 MHz, Acetone-d₆): δ 7.56 (dd, J = 1.2, 8.1 Hz, 1H), 7.41 (d, J = 1.2 Hz, 1H), 7.26 (m, 4H), 7.00 (m, 8H), 6.89 (dd, J = 8.7, 2.7 Hz, 1H), 6.84 (d, J = 2.7 Hz, 1H), 3.94 (t, J = 6.9 Hz, 2H), 1.73 (m, 2H), 1.48 (m, 2H), 1.30 (s, 12 H), 0.93 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 147.95, 147.83, 142.94, 140.64, 134.34, 133.97, 129.29, 125.90, 124.24, 124.09, 123.59, 123.52, 122.41, 115.99, 114.64, 83.75, 47.27, 29.85, 29.08, 24.98, 20.31, 14.01. HRMS (EIS): m/z [M]⁺ calcd for $C_{34}H_{37}BN_2O_2S$: 548.2335; found: 548.2358.

B-3: 0.46 g, yield 73.7 %. ¹H NMR (300 MHz, DMSO-d₆): δ 7.56 (d, J = 8.7 Hz, 2H), 7.41 (m, 2H), 7.39 (d, J = 2.1 Hz, 1H), 7.32 (m, 5H), 7.03 (m, 10H), 3.90 (t, J = 6.9 Hz, 2H), 1.68 (m, 2H), 1.41 (m, 2H), 1.27 (s, 12 H), 0.88 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 147.85, 147.03, 143.68, 135.30, 134.17, 134.00, 129.63, 129.44, 129.23, 127.30, 125.28, 124.69, 124.50, 124.33, 124.20, 123.69, 123.02, 115.71, 114.75, 83.86, 47.37, 29.07, 25.35, 25.03, 20.33, 14.04. HRMS (EIS): m/z [M]⁺ calcd for C₄₀H₄₁BN₂O₂S: 624.2976; found: 624.2964.

B-4: 0.43 g, yield 77.4 %. ¹H NMR (300 MHz, DMSO-d₆): δ 7.55 (m, 3H), 7.44 (m, 2H), 7.36 (d, J = 2.1 Hz, 1H), 7.06 (dd, J = 12.9, 8.1 Hz, 2H), 6.98 (d, J = 9.0 Hz, 2H), 4.01 (m, 4H), 1.74 (m, 4H), 1.48 (m, 4H), 1.35 (m, 16H), 0.92 (m, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 158.67, 147.88, 143.49, 135.58, 134.34, 133.99, 132.50, 127.63, 125.53, 125.43, 125.29, 123.75, 115.70, 114.94, 114.73, 83.84, 68.25, 47.33, 31.80, 29.91, 29.46, 29.09, 25.94, 25.02, 22.82, 20.32, 14.26, 14.02. HRMS (EIS): m/z [M+1]⁺ calcd for C₃₄H₄₄BNO₃S: 558.3208; found: 558.3192.

General synthetic procedure for compounds C-n

Compound **B-n** (0.5 mmol) was treated with **6** (0.6 mmol) in the presence of $Pd(PPh_3)_4$ (57.8 mg, 50 µmol), 1 N aqueous solution of K_2CO_3 (3 mL) and 1,2-dimethoxyethane (22 mL). The mixture was degassed for three times and refluxed for 48 h. After cooling and addition of AcOEt (50 mL), the mixture was washed with water and dried on magnesium sulfate. Solvents were removed by rotary evaporation and the residue was purified by silica gel column chromatography with petroleum ether:AcOEt (10:1, v:v) as eluent to give **C-n** as an orange solid.

C-1: 173.8 mg, yield 70.5 %. ¹H NMR (300 MHz, Acetone-d₆): δ 10.16 (s, 1H), 8.31 (d, J = 8.7 Hz, 2H), 8.09 (m, 3H), 7.96 (m, 3H), 7.22 (m, 3H), 7.10 (d, J = 6.9 Hz, 1H), 6.99 (t, J = 7.8 Hz, 1H), 4.06 (t, J = 6.9 Hz, 2H), 1.86 (m, 2H), 1.53 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 191.74, 153.62, 153.58, 145.46, 144.48, 143.10, 135.51, 132.93, 132.92, 130.80, 129.75, 129.59, 128.79, 128.22, 127.63, 127.35, 127.26, 126.53, 124.67, 124.00, 122.52, 115.33, 115.01, 47.16, 28.81, 20.12, 13.80. Anal. Calcd. for C₂₉H₂₃N₃OS₂ • 1/6 CH₂Cl₂: C, 68.99; H, 4.63; N, 8.28. Found: C, 69.15; H, 4.36; N, 8.07. HRMS (ESI): calcd for C₂₉H₂₃N₃OS₂ m/z: 493.1557, found: 493.1546.

C-2: 221.8 mg, yield 67.2 %. ¹H NMR (300 MHz, DMSO-d₆): δ 10.12 (s, 1H), 8.17 (d, J = 8.1 Hz, 2H), 8.06 (d, J = 8.1 Hz, 2H), 7.84 (d, J = 7.8 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.24 (m, 4H), 7.01 (m, 5H), 6.94 (m, 4H), 6.79 (d, J = 8.7 Hz, 1H), 3.90 (t, J = 6.9 Hz, 2H), 1.87 (m, 2H), 1.54 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 191.92, 153.90, 153.83, 147.79, 143.36, 143.00, 140.45, 136.86, 135.76, 133.24, 132.41, 131.02, 130.00, 129.83, 129.30, 129.03, 128.94, 128.50, 127.90, 126.77, 125.18, 124.43, 124.24, 123.55, 122.47, 115.99, 115.10, 47.43, 29.83, 20.40, 14.04. HRMS (EIS): m/z [M]⁺ calcd for C₄₁H₃₂N₄OS₂: 660.1794; found: 660.1814.

C-3: 264.2mg, yield 71.8 %. ¹H NMR (300 MHz, DMSO-d₆): δ 10.07 (s, 1H), 8.12 (d, J = 8.1 Hz, 2H), 8.01 (d, J = 8.1 Hz, 2H), 7.81 (m, 3H), 7.70 (d, J = 7.5 Hz, 2H), 7.38 (m, 4H), 7.25 (t, J = 7.8 Hz, 4H), 7.11 (m, 4H), 7.01 (dd, J = 7.2, 12.9 Hz, 4H), 6.90 (d, J = 8.7 Hz, 1H), 3.90 (t, J = 6.9 Hz, 2H), 1.76 (m, 2H), 1.51 (m, 2H), 0.90 (t,

J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 192.05, 153.97, 153.91, 147.78, 147.07, 145.59, 143.52, 143.47, 135.82, 135.34, 133.95, 133.33, 131.17, 130.50, 130.09, 129.90, 129.43, 129.10, 128.57, 128.15, 127.96, 127.24, 126.88, 125.65, 125.50, 124.59, 124.51, 124.12, 123.05, 115.71, 115.25, 47.51, 29.08, 20.40, 14.06. HRMS (EIS): m/z [M]⁺ calcd for C₄₇H₃₆N₄OS₂: 736.2325; found: 736.2313.

C-4: 205.0 mg, yield 61.3 %. ¹H NMR (300 MHz, CDCl₃): δ 10.06 (s, 1H), 8.10 (d, J = 7.2 Hz, 2H), 8.00 (d, J = 7.2 Hz, 2H), 7.74 (m, 4H), 7.43 (d, J = 8.7 Hz, 2H), 7.31 (m, 2H), 6.93 (m, 4H), 3.96 (m, 4H), 1.79 (m, 4H), 1.45 (m, 8H), 0.97 (m, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 192.12, 158.64, 153.91, 153.85, 147.08, 145.58, 143.44, 143.27, 135.73, 135.54, 133.26, 132.27, 131.07, 130.07, 129.86, 129.44, 129.09, 128.54, 127.91, 127.56, 126.84, 125.62, 125.49, 124.48, 115.67, 115.18, 114.88, 68.18, 47.43, 31.76, 29.40, 29.00, 25.90, 22.79, 20.37, 14.26, 14.05. HRMS (EIS): m/z [M]⁺ calcd for C₄₁H₃₉N₃O₂S₂: 669.2478; found: 669.2467.

Synthesis of compounds PZ-n

A CHCl₃ (10 mL) solution of compound **C-n** (0.3 mmol), cyanoacetic acid (123.2 mg, 1.5 mmol) and piperidine (0.19 mL, 1.9 mmol) were charged sequentially into a three-necked flask under a nitrogen atmosphere and heated to reflux till no starting material **C-n** was detected by the TLC plate. After cooling to 0 °C, 2M HCl (5mL) were added dropwisely into the flask and stirred for 1h. The mixture was washed with water and dried on anhydrous magnesium sulfate. Solvents were removed by rotary evaporation, and the residue was purified by silica gel column chromatography with CH₂Cl₂:CH₃OH (10:1, v:v) as eluent to afford the dye **PZ-n** as a dark purple solid.

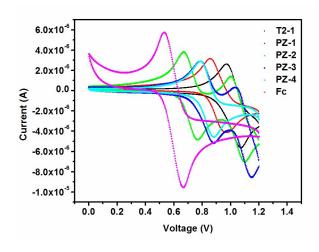
PZ-1: 116.3 mg, yield 69.2 %. ¹H NMR (300 MHz, DMSO-d₆): δ 14.07 (br, 1H), 8.42 (s, 1H), 8.23 (m, 4H), 8.06 (d, J = 7.2 Hz, 1H), 7.97 (d, J = 7.2 Hz, 1H), 7.91 (m, 2H), 7.31 (dd, J = 9.3, 40.5 Hz, 1H), 7.21 (m, 2H), 7.08 (d, J = 7.8 Hz, 1H), 6.99 (m, 1H), 3.95 (t, J = 6.9 Hz, 2H), 1.72 (m, 2H), 1.45 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃-CD₃OD): δ 164.06, 154.30, 153.80, 153.68, 145.64, 144.64, 143.86, 142.00, 133.16, 131.21, 130.97, 130.68, 129.77, 129.54, 128.86, 128.33, 127.72, 127.34, 126.80, 124.78, 124.11, 122.58, 116.55, 116.06, 115.45, 115.17, 47.20, 28.92, 20.14, 13.73. Anal. Calcd. for C₃₂H₂₄N₄O₂S₂ • 1/3 CH₂Cl₂ • 1/3 CH₃OH: C, 65.43; H, 4.37; N, 9.34. Found: C, 65.23; H, 4.05; N, 9.28. HRMS (ESI): m/z [M+1]⁺ calcd for C₃₂H₂₄N₄O₂S₂ m/z: 561.1413, found: 560.1420.

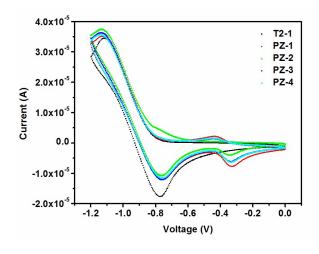
PZ-2: 171.2 mg, yield 78.5 %. ¹H NMR (300 MHz, DMSO-d₆): δ 14.09 (br, 1H), 8.40 (s, 1H), 8.22 (m, 4H), 8.07 (d, J = 7.5 Hz, 1H), 7.98 (d, J = 7.5 Hz, 1H), 7.91 (m, 1H), 7.86 (d, J = 2.1 Hz, 1H), 7.28 (m, 4H), 7.20 (d, J = 8.7 Hz, 1H), 6.99 (m, 9H), 3.92 (t, J = 6.3 Hz, 2H), 1.74 (m, 2H), 1.44 (m, 2H), 0.93 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃-CD₃OD): δ 164.48, 158.89, 154.12, 153.81, 153.70, 153.68, 147.74, 142.89, 142.54, 141.94, 141.92, 141.81, 141.63, 140.48, 131.20, 130.70, 129.77, 129.40, 129.18, 128.86, 128.45, 127.02, 126.75, 125.14, 124.19, 123.47, 122.35, 116.24, 116.04, 115.97, 47.32, 28.92, 20.24, 13.82. Anal. Calcd. for C₄₄H₃₃N₅O₂S₂ • 1/4 CH₂Cl₂: C, 70.95; H, 4.51; N, 9.35. Found: C, 70.72; H, 4.24; N, 9.41. HRMS (ESI): m/z [M]⁺ calcd for C₄₄H₃₃N₅O₂S₂ m/z: 727.2070, found:727.2078. **PZ-3**: 174.4 mg, yield 72.4 %. ¹H NMR (400 MHz, DMSO-d₆): δ 14.05 (s, 1 H), 8.39 (s, 1H), 8.22 (dd, J = 18.3, 8.7 Hz, 4H), 8.06 (d, J = 7.5 Hz, 1H),

7.98 (d, J = 7.5 Hz, 1H), 7.91 (m, 2H), 7.58 (d, J = 8.7 Hz, 2H), 7.49 (dd, J = 8.5, 2.1 Hz, 1H), 7.44 (d, J = 2.1 Hz, 1H), 7.32 (dd, J = 8.2, 7.5 Hz, 4 H), 7.20 (d, J = 8.6 Hz, 1H), 7.11 (d, J = 8.6 Hz, 1H), 7.04 (m, 8H), 3.97 (t, J = 6.9 Hz, 2H), 1.75 (m, 2H), 1.46 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H).

13C NMR (75 MHz, CDCl₃-CD₃OD): δ 164.39, 153.96, 153.81, 153.68, 147.63, 146.91, 145.39, 143.38, 141.87, 135.12, 133.80, 133.11, 131.13, 131.00, 130.73, 129.75, 129.22, 128.84, 128.39, 127.89, 127.76, 127.03, 126.81, 126.00, 125.71, 125.44, 125.23, 124.42, 124.29, 123.91, 122.85, 116.22, 115.56, 115.11, 47.26, 28.88, 20.13, 13.71. Anal. Calcd. for $C_{50}H_{37}N_5O_2S_2 \cdot CH_3OH$: C, 73.27; H, 4.9 4; N, 8.38. Found: C, 73.19; H, 4.69; N, 8.39. HRMS (ESI): m/z [M+1]⁺ calc d for $C_{50}H_{37}N_5O_2S_2$ m/z: 804.2461, found: 804.2460.

PZ-4: 181.9 mg, yield 82.4 %. ¹H NMR (300 MHz, DMSO-d₆): δ 14.09 (br, 1H), 8.39 (s, 1H), 8.24 (d, J = 8.4 Hz, 2H), 8.20 (d, J = 8.4 Hz, 2H), 8.06 (d, J = 7.2 Hz, 1H), 7.98 (d, J = 7.2 Hz, 1H), 7.91 (m, 2H), 7.56 (m, J = 8.7 Hz, 2H), 7.44 (m, 2H), 7.20 (d, J = 8.1 Hz, 1H), 7.10 (d, J = 8.1 Hz, 1H), 6.97 (d, J = 8.7 Hz, 2H), 3.98 (m, 4H), 1.71 (m, 4H), 1.31 (m, 8H), 0.92 (m, 6H). ¹³C NMR (75 MHz, CDCl₃-CD₃OD): δ 164.88, 158.36, 153.93, 153.68, 153.57, 145.29, 143.07, 141.76, 135.24, 132.93, 132.14, 131.03, 130.80, 130.51, 129.63, 128.75, 128.28, 127.62, 127.27, 126.66, 125.34, 125.11, 124.26, 124.20, 118.85, 116.20, 115.46, 114.95, 114.71, 106.01, 68.06, 47.17, 31.48, 29.13, 28.78, 25.60, 22.48, 20.05, 13.79, 13.61. Anal. Calcd. for C₄₄H₄₀N₄O₃S₂₂ • 1/3 CH₂Cl₂: C, 69.58; H, 5.36; N, 7.32. Found: C, 69.63; H, 5.22; N, 7.36. HRMS (ESI): m/z [M+1]⁺ calcd for C₄₄H₄₀N₄O₃S₂ *m/z*: 737.2615, found:

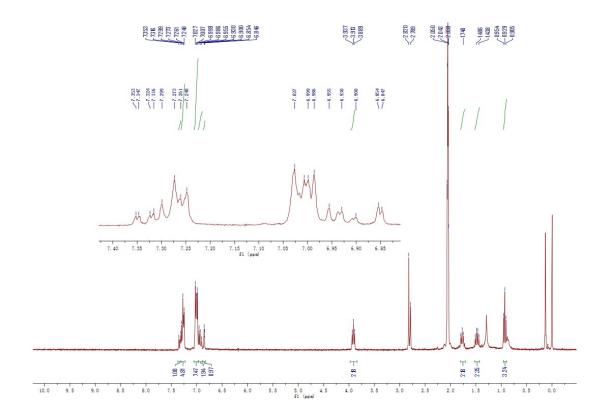

737.2609.


References.

- (1) H. Tian, X. Yang, R. Chen, Y. Pan, L. Li, A. Hagfeldt and L. Sun, *Chem. Commun.*, 2007, 3741–3743.
- (2) K. D. Seo, I. T. Choi and H. K. Kim, Chem. Eur. J., 2015, 21, 14804–14811.
- (3) R. Y. Lai, X. Kong, S. A. Jenekhe and A. J. Bard, J. Am. Chem. Soc., 2003, 125, 12631–12639.
- (4) Y. Hua, L. T. L. Lee, C. Zhang, J. Zhao, T. Chen, W. Y. Wong, W. K. Wong and X. Zhu, *J. Mater. Chem. A*, 2015, **3**, 13848–13855.
- (5) I. S. Perețeanu and T. J. J. Müller, Org. Biomol. Chem., 2013, 11, 5127-5135.
- (6) X. Sun, Y. Wang, X. Li, H. Ågren, W. Zhu, H. Tian and Y. Xie, Chem. Commun., 2014, 50, 15609–15612.
- (7) H. Gao, X. Qian, W. Chang, S. Wang, Y. Zhu and J. Zheng, *J. Power Sources*, 2016, **307**, 866–874.
- (8) L. Zhang, S. Zeng, L. Yin, C. Ji, K. Li, Y. Li and Y. Wang, New J. Chem., 2013, 37, 632-639.

Results and discussion.

Photophysical and electrochemical properties.



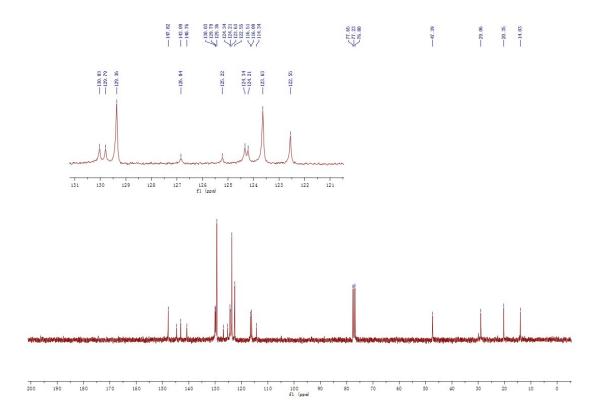
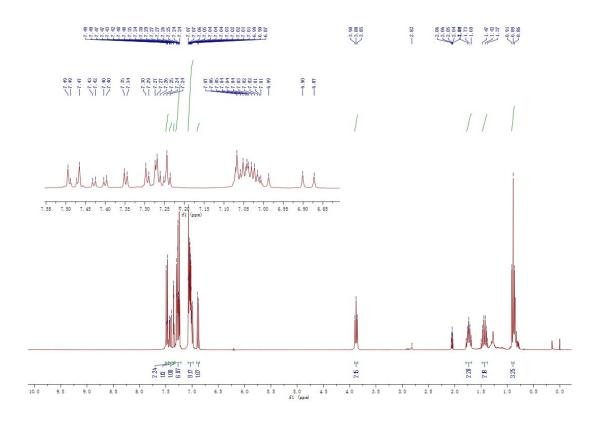
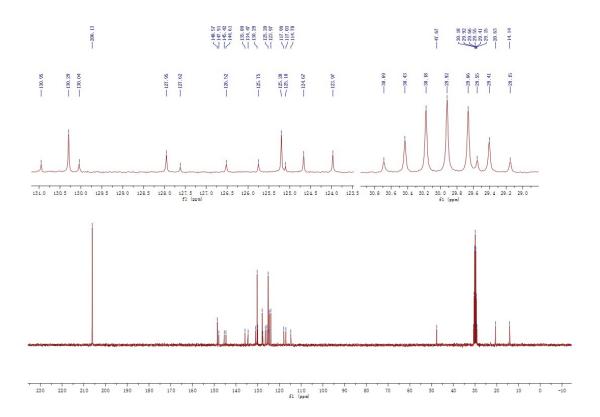
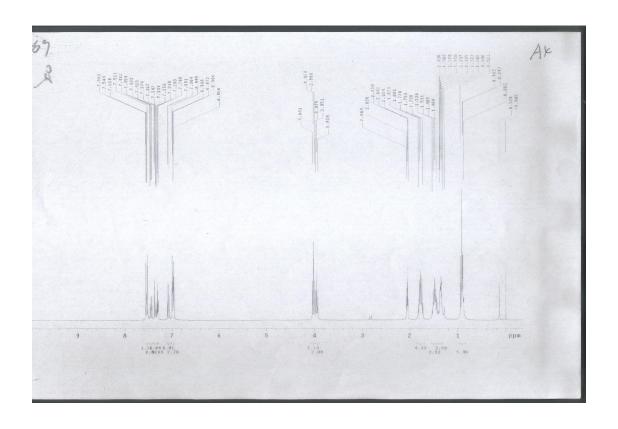


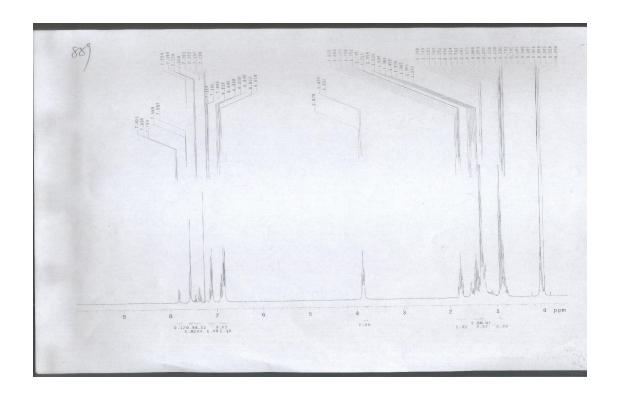
Figure S2. CV curves of organic dyes and Fc/Fc⁺ in THF.

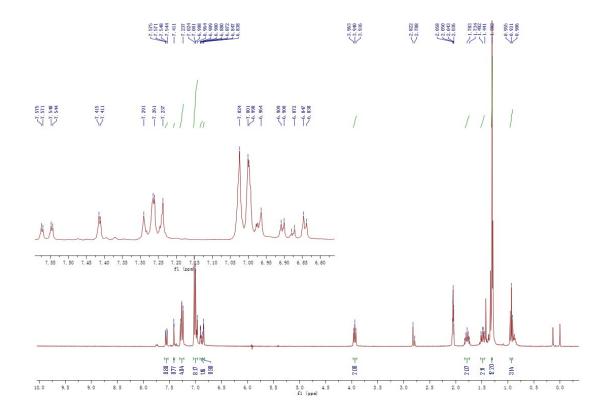

NMR and HRMS spectra for our compounds.

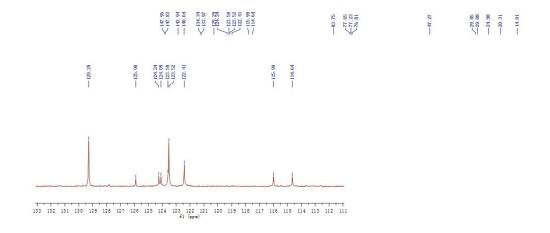
A2-¹**H**

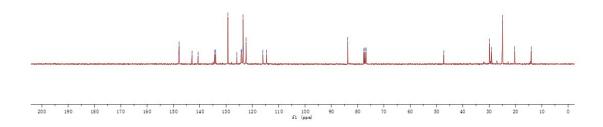



A3-1H

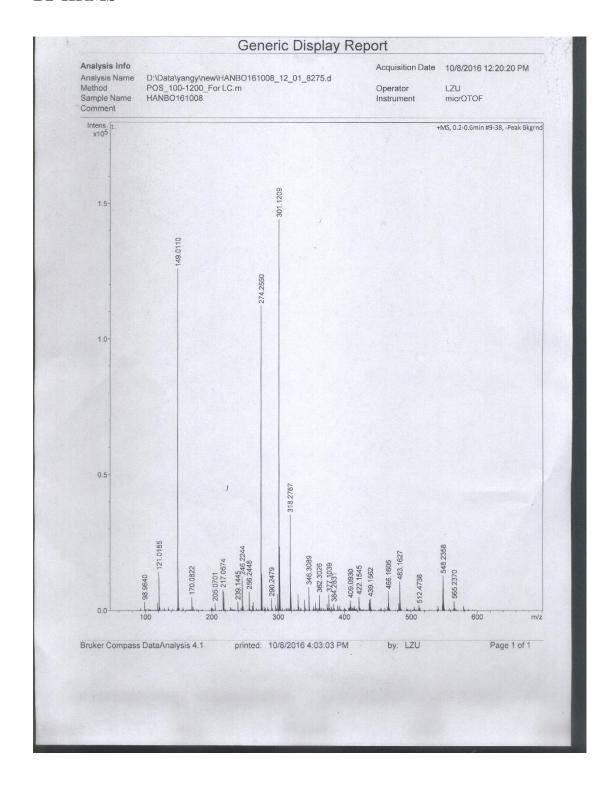

A3-13C


A4-1H

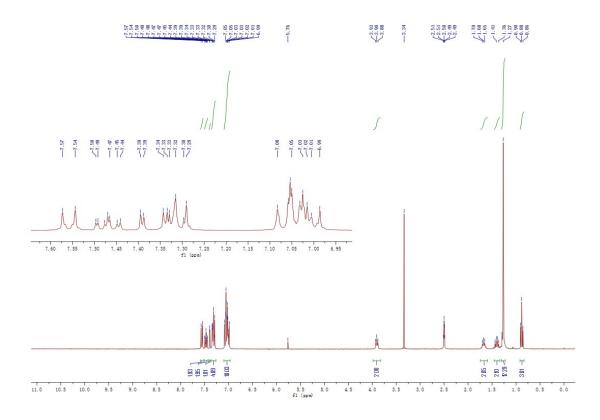

B1-¹**H**

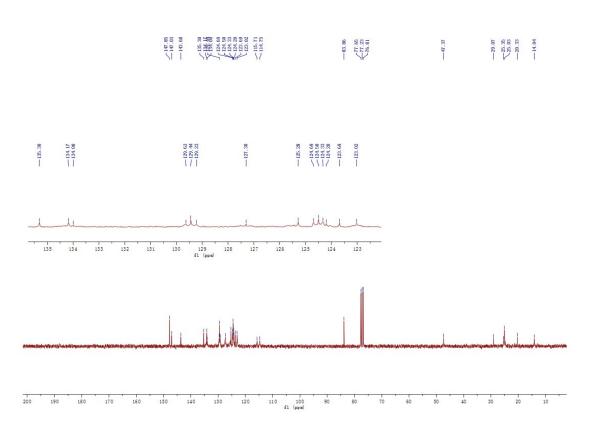


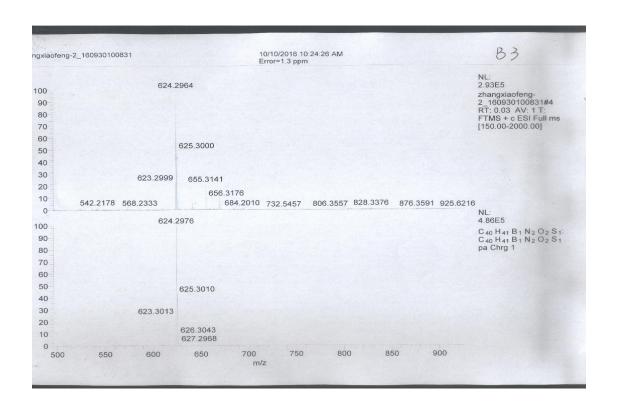
B2-¹**H**

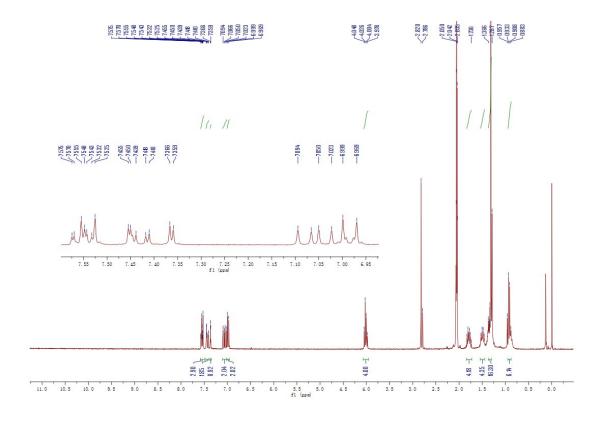


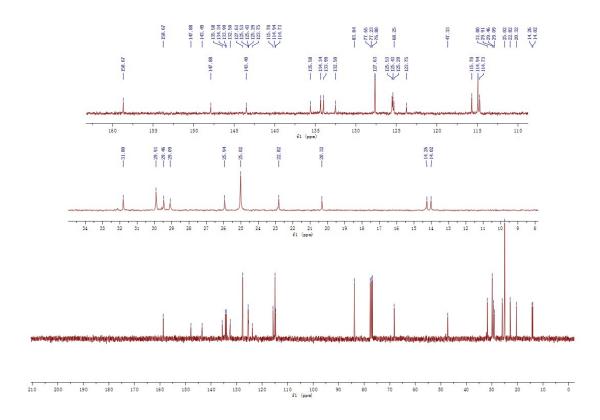
B2-¹³**C**

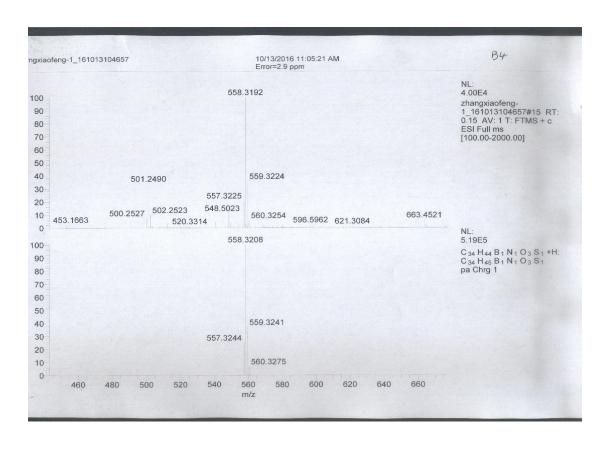



B2-HRMS

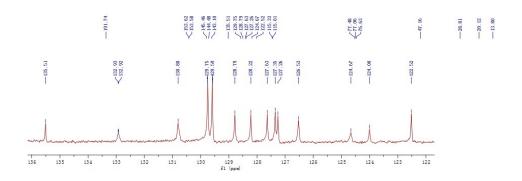

B3-1H

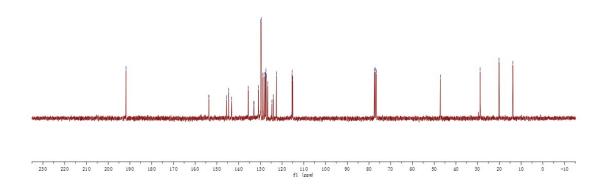

B3-13C


B3-HRMS

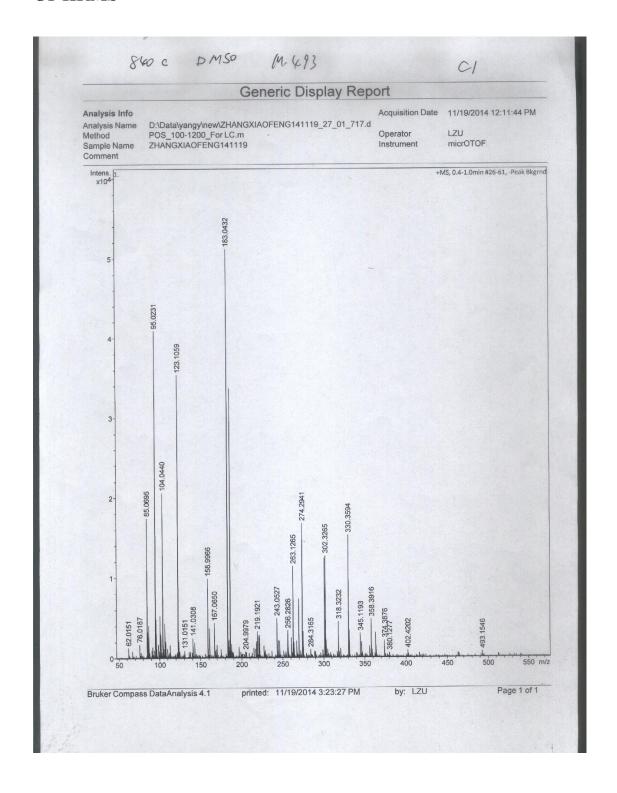

B4-¹**H**


B4-¹³**C**

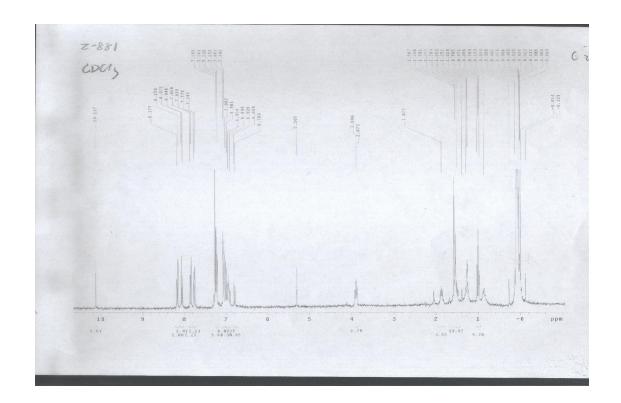

B4-HRMS

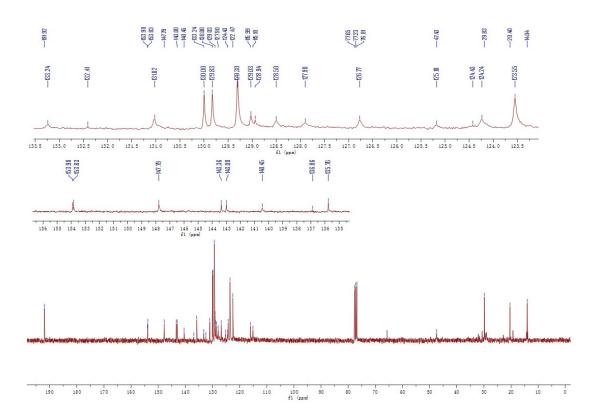


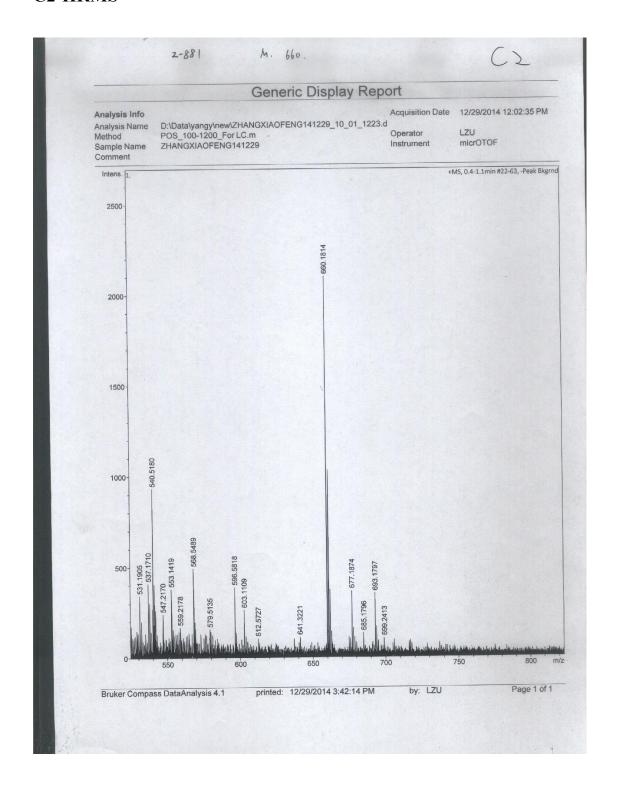
C1-1H

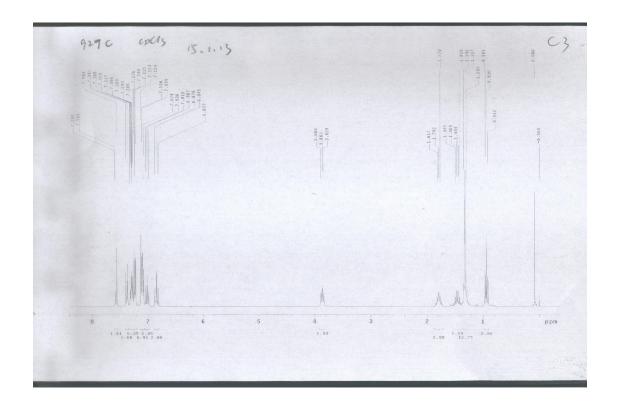


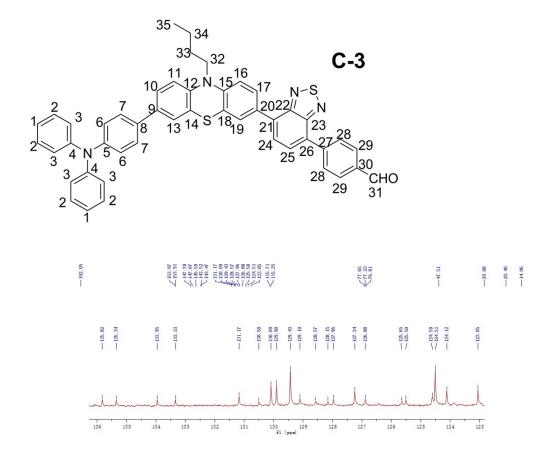
C1-13C

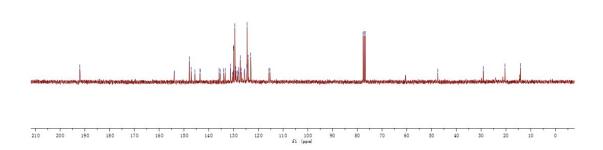


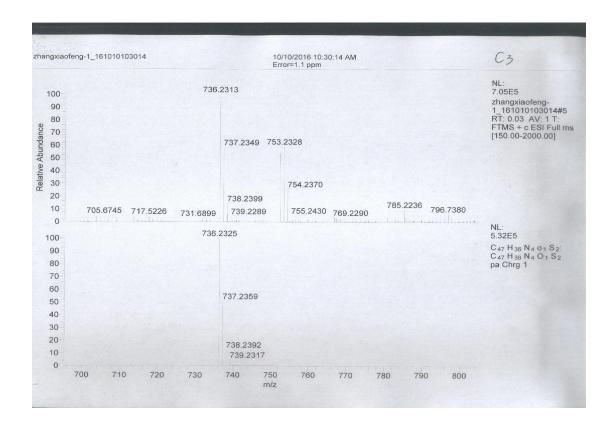

C1-HRMS

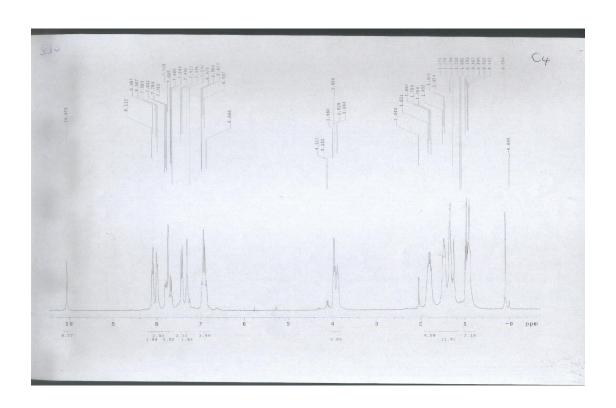

C2-1H

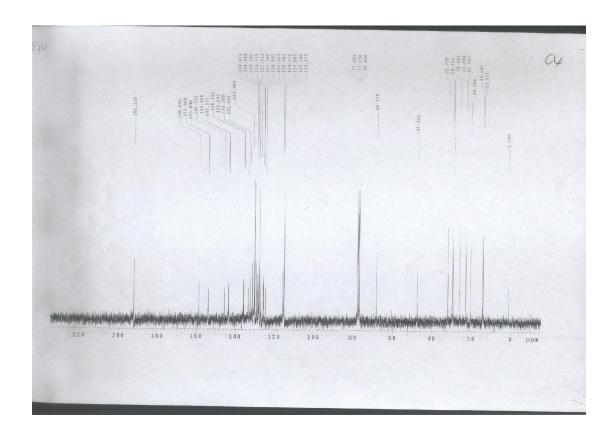

$C2-^{13}C$

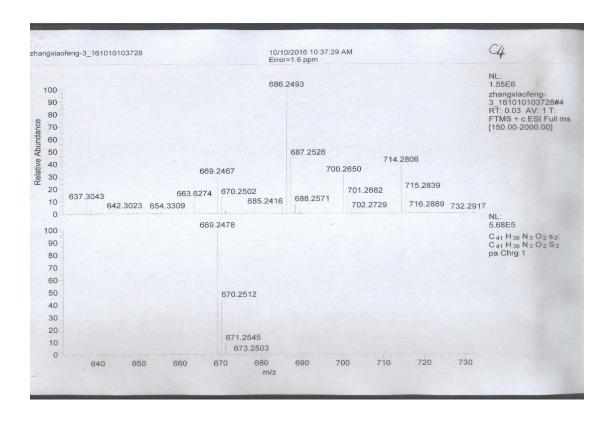



C2-HRMS

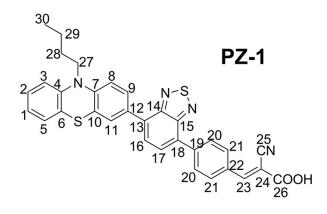

C3-1H

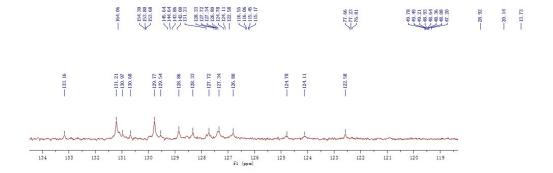


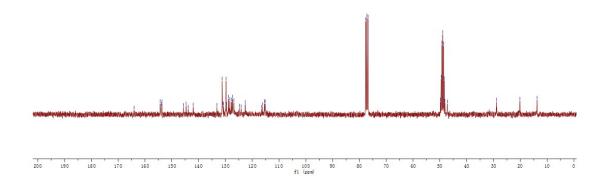

C3-HRMS


C4-1H

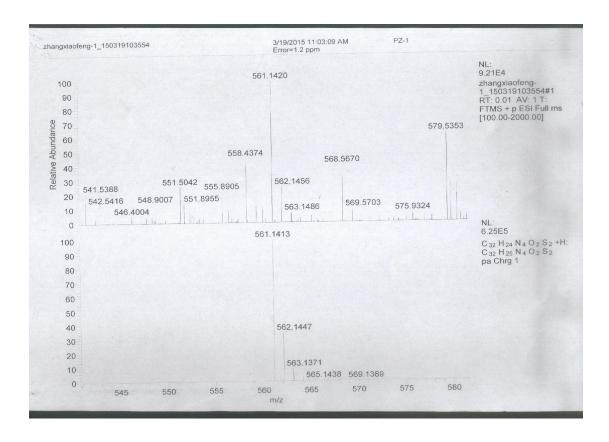
C4-13C

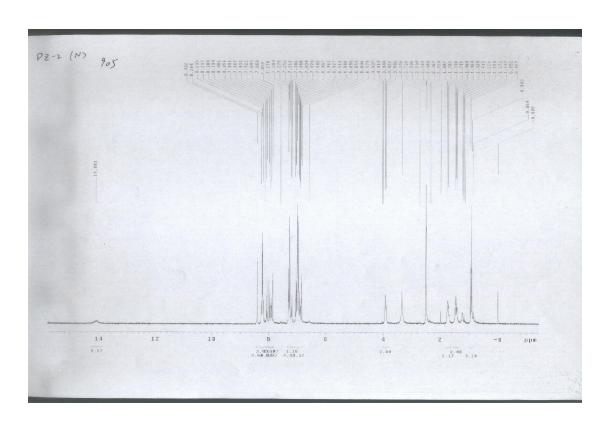


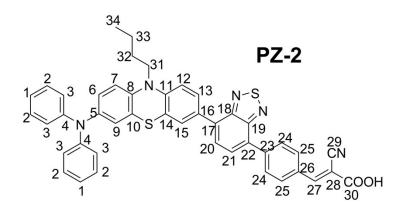

C4-HRMS

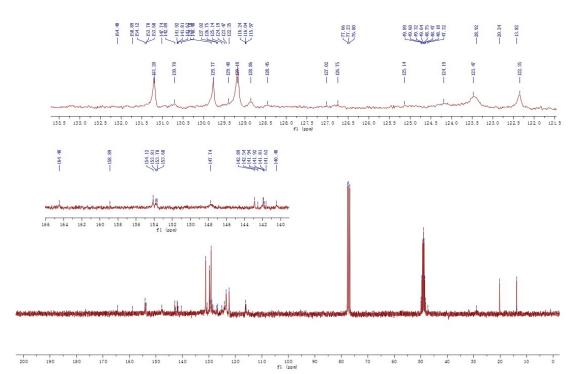


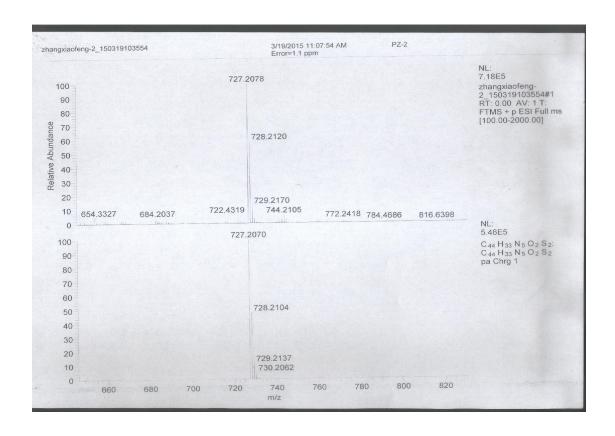
PZ-1-¹H

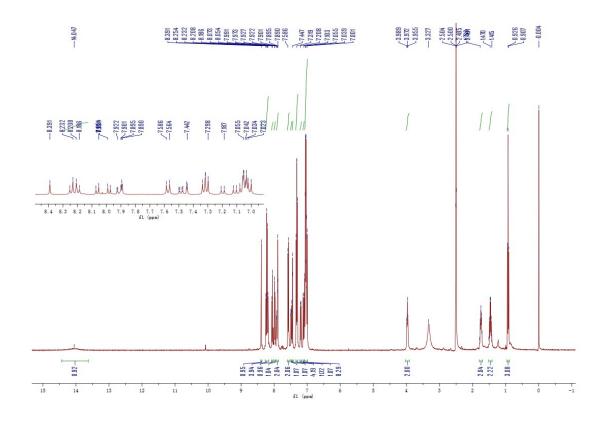


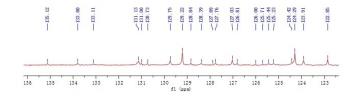


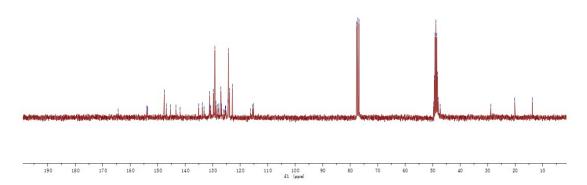


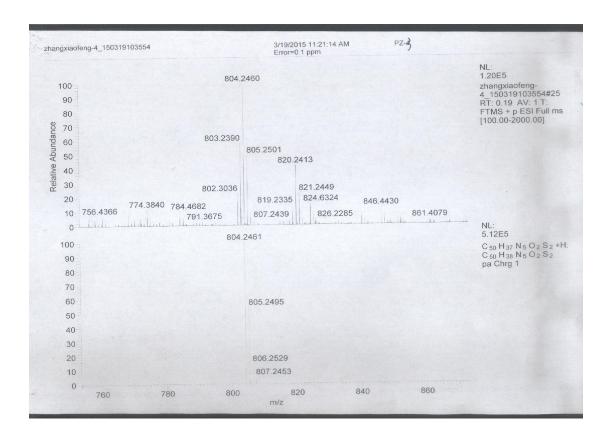

PZ-1-HRMS

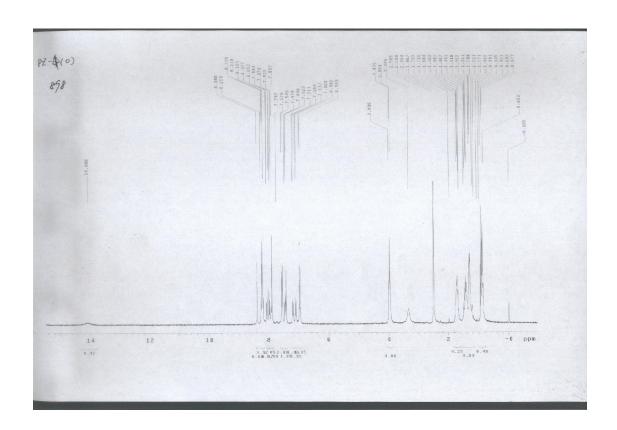

PZ-2-¹**H**

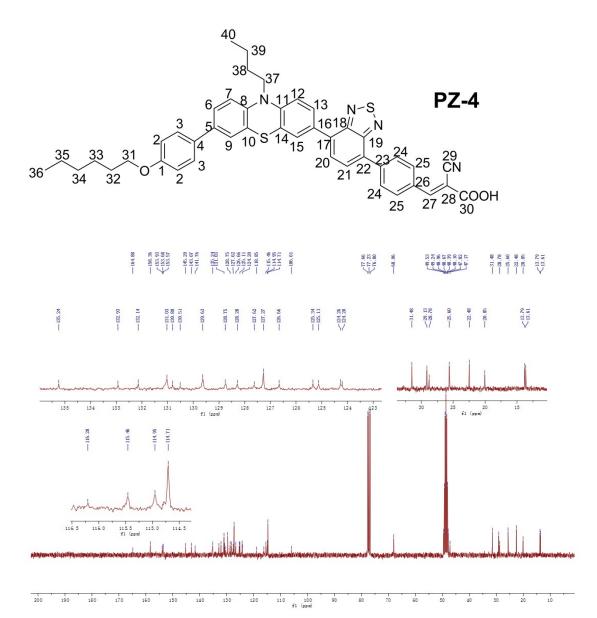




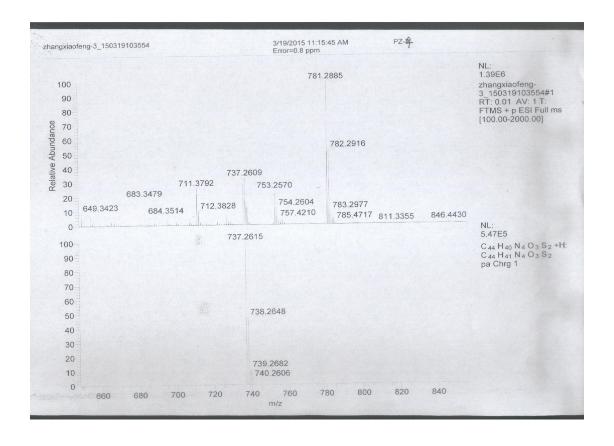

PZ-2-HRMS


PZ-3-¹H





PZ-3-HRMS



PZ-4-¹H

PZ-4-HRMS

