Supporting Information

Porous Hollow Manganites with Robust Composite Shells for Oxidation of CO at Low Temperature

Jung Bo Yoo^a, Sora Bang^b, Kyungtae Kim^b, Chengbin Li^c, Ji Man Kim^c and Nam Hwi Hur^{b*}

^aNuclear Chemistry Research Division, Korea Atomic Energy Research Institute, 111 Daedeok-daero-989, Yuseong-gu, Daejeon, 34057 Korea

^bDepartment of Chemistry, Sogang University, Seoul 121-742, Korea

^cDepartment of Chemistry, Sungkyunkwan University, Suwon, 16419, Korea.

*E-mail: <u>nhhur@sogang.ac.kr</u>

I. Experimental

Synthesis of hollow nickel-coated silica microspheres (Ni@SiO₂)

The prepared core/shell SiO₂ microspheres (0.495 g) were dispersed in 250 mL of deionized water in a 500 mL round-bottom flask. Nickel acetylacetonate (0.4 g, 1.6 x 10^{-3} mol) and urea (4.0 g, 6.7 x 10^{-2} mol) were dissolved into the solution, which was then stirred at 80 °C for 2 h. The white microspheres gradually became green colloidal spheres, which were separated from the solution by centrifugation (3000 rpm), and dried in an oven at 100 °C. The dried microspheres (Ni(OH)₂@SiO₂) were annealed at 750 °C for 20 h under a reducing atmosphere (Ar/H₂ = 95:5) to yield the desired nickel-coated microspheres(Ni@SiO₂). Furthermore, the resultant green colloidal spheres were annealed in air at 700 °C for 10 h, yielding nickel oxide-coated silica microspheres, which were denoted as NiO@SiO₂.

II. Figures

Fig. S1 Representative TEM images of SiO_2 microspheres with a core/shell structure. High and low resolution images are given in a) and b), respectively. The core having a dark image had a diameter of approximately 250 nm and the shell with a bright image had a thickness of 35–45 nm. Both core and shell are composed of Si and O, which was determined by Energy-dispersive X-ray spectroscopy. Carbon residues were not detected.

Fig. S2 Pore-size distribution curves of Mn_2O_3/SiO_2_1T , Mn_2O_3/SiO_2_2T , (c) Mn_2O_3/SiO_2_3T , in which pore-size distributions were calculated using the Barrett-Joyner-Halenda method.

Fig. S3 (a) Powder XRD pattern and (b) representative TEM image of Mn_3O_4/SiO_2_3T microspheres.

Fig. S4 (a) Powder XRD pattern and (b) representative TEM image of NiO/SiO_2_3T microspheres.

Fig. S5 (a) Powder XRD pattern and (b) representative TEM image of Ni/SiO_{2_}3T microspheres.

III. Tables

Table S1. Comparison of catalytic performance for CO oxidation of Mn_2O_3/SiO_2_3T with other Mn-based catalysts.

No	Catalysts	S _{BET} [m²/g]	Conditions	Т₅о [°С]	T₁₀₀ [°C]	Ref	Remark
1	Mn ₂ O ₃ /SiO ₂ _3T	497.11	0.05 g of catalyst, 3.5 % CO and 8.4 % O ₂ , 50 mL/min	110	< 200	This work	Mn (45.48 wt%)
2	PdO _x /Mn ₂ O ₃	25.50	1 g of catalyst, 2000 ppm CO in air, GHSV = 12200 h ^{.1}	130	200	1	PdO _x (1 wt%)
3	Mn ₂ O ₃	37.00	0.05 g of catalyst, 1 % CO, 20 % O ₂ , 50 mL/min	135	400	2	Mn (53.39 wt%)
4	Au/Mn ₂ O ₃	29.00	0.05 g of catalyst, 1 % CO, 20 % O ₂ , 50 mL/min	25	100	2	Au (2.9 wt%)
5	Mn ₂ O ₃	20.00	1 mL of catalyst, 1% CO, 18 % O ₂ , GHSV = 10000 h ⁻¹	150	220	3	Mn (53.39 wt%)
6	Mn ₂ O ₃ -Al ₂ O ₃	127.04	0.3 g of catalyst, 1 % CO, 18.8 % O ₂ , 100 mL/min	280	> 300	10	-
7	Au/Mn ₂ O ₃ -Al ₂ O ₃	210.12	0.3 g of catalyst, 1 % CO, 18.8 % O ₂ , 100 mL/min	270	> 300	10	Au (2 wt%)
8	α-Mn ₂ O ₃	37.00	0.05 g of catalyst, 1 % CO, 20 % O ₂ , 50 mL/min	134	180	5	Mn (53.39 wt%)
9	Mn ₂ O ₃ /Mn ₃ O ₄	18.00	0.2 g of catalyst, 5 % CO, 10 % O ₂ , GHSV = 36000 h ⁻¹	300	500	6	Mn (64.59 wt%)
10	3DOM Mn ₂ O ₃	37.70	1% CO, 20 % O ₂ , GHSV = 20000 h ⁻¹	168	> 300	7	Mn (53.39 wt%)
11	a-Mn ₂ O ₃	27.00	1 % CO, 20 % O ₂ , GHSV = 36000 h ^{.1}	155	300	8	Mn (53.39 wt%)
12	Mn ₂ O ₃	-	0.5 g of catalyst, 1:1 mixture CO+O ₂ , 30 mL/min	210	300	9	Mn (53.39 wt%)
13	Mn ₂ O ₃ +SnO ₂	-	0.5 g of catalyst, 1:1 mixture CO+O ₂ , 30 mL/min	120	> 400	9	-
14	γ-Mn ₂ O ₃	-	0.15 g of catalyst, 2.4 % CO, 1.2 % O ₂ , 80 mL/min	165	> 350	4	Mn (53.39 wt%)
15	Ag/γ-Mn ₂ O ₃	-	0.15 g of catalyst, 2.4 % CO, 1.2 % O ₂ , 80 mL/min	110	200	4	Ag (20 wt%)
16	Mn ₂ O ₃ /SBA-15	226.00	5 % CO, 5 % O ₂ , GHSV = 6000 h ⁻¹	200	> 250	11	-
17	α-Mn ₂ O ₃	-	1 % CO, 20 % O ₂ , GHSV = 36000 h ⁻¹	160	300	12	Mn (53.39 wt%)
18	Mn _{1.95} Pd _{0.05} O ₃	11.30	0.9 g of catalyst, 5 % CO, 5 % O ₂ , 80 mL/min	169	190	13	Pd (3.3 wt%)
19	Mn _{1.92} Pd _{0.08} O ₃	13.50	0.9 g of catalyst, 5 % CO, 5 % O ₂ , 80 mL/min	160	180	13	Pd (5.3 wt%)

No	Catalysts	Catalyst Weight (mg)	CO Concentration (%)	Flow Rate (mL/min)	T₅₀ (°C)	T ₁₀₀ (°C)	Ref
1	Mn ₂ O ₃ /SiO ₂ _3T	50	3.5	50.0	110	< 200	This Work
2	CuO/Ce _{0.8} Zr _{0.2} O ₂	200	10.0	36.6	-	90	14
3	CuO-Fe ₂ O ₃	200	10.0	36.6	-	115	15
4	CuO/MTPs ^{a)}	200	10.0	36.6	-	300	16
5	CuO/Al ₂ O ₃	150	2.0	100.0	226	> 265	17
6	CuO nanorods	80	15.0	15.0	140	160	18
7	CuO/ARM-20% ^{b)}	200	10.0	50.0	120	170	19
8	CuO/CeO ₂	100	1.0	66.7	100	150	20
9	FeCo15 ^{c)}	200	10.0	36.6	180	250	21
10	LFO-2 ^{d)}	200	1.0	100.0	170	208	22
11	CuO-Ce _{1-x} La _x O _{2-x}	400	5.4	215.0	150	> 300	23

Table S2. Comparison of catalytic performance for CO oxidation of Mn_2O_3/SiO_2_3T with inexpensive catalysts on the basis of metal oxides.

^{a)} MTPs: mesoporous titanium phosphonate spheres, ^{b)} ARM-20%: activated red mud, ^{c)} FeCo15: mesoporous Co-Fe-O nanocatalysts (FeCox, x = Co/Co+Fe), ^{d)} LFO-2: LaFeO₃ (SiO₂ nanospheres as the hard template).

IV. References

- 1. J. S. Park, D. S. Doh and K. Lee, Top. Catal., 2000, 10, 127.
- L. Wang, Q. Liu, X. Huang, Y. Liu, Y. Cao and K. Fan, *Appl. Catal. B: Environ.*, 2009, 88, 204.
- 3. S. Imamura, H. Sawada, K. Uemura and S. Ishida, J. Catal., 1988, 109, 198.
- 4. R. Lin, W. Liu, Y. Zhong and M. Luo, Appl. Catal. A: Gen., 2001, 220, 165.
- L. Wang, X. Huang, Q. Liu, Y. Liu, Y. Cao, H. He, K. Fan and J. Zhuang, J. Catal., 2008, 259, 66.
- S. A. C. Carabineiro, S. S. T. Bastos, J. J. M. órfäo, M. F. R. Pereira, J. J. Delgado and J. L. Figueiredo, *Catal. Lett.*, 2010, 134, 217.
- 7. S. Xie, H. Dai, J. Deng, H. Yang, W. Han, H. Arandiyan and G. Guo, J. Hazard.

Mater., 2014, 279, 392.

- Y. Luo, Y. Deng, W. Mao, X. Yang, K. Zhu, J. Xu and Y. Han, J. Phys. Chem. C., 2012, 116, 20975.
- 9. S. K. Kulshreshtha and M. M. Gadgil, Appl. Catal. B: Environ., 1997, 11, 291.
- 10. B. Malecka and M. Rajska, Ceram. Mater., 2010, 62, 540.
- Y. Han, F. Chen, Z. Zhong, K. Ramesh, L. Chen and E. Widjaja, J. Phys. Chem. B., 2006, 110, 24450.
- 12. J. Xu, Y. Deng, Y. Luo, W. Mao, X. Yang and Y. Han, J. Catal., 2013, 300, 225.
- 13. R. K. Kunkalekar and A. V. Salker, Reac. Kinet. Mech. Cat., 2012, 106, 395.
- J-L. Cao, Y. Wang, T-Y. Zhang, S-H Wu and Z-Y. Yuan, *Appl. Catal. B: Environ.*, 2008, 78, 120.
- 15. J-L. Cao, Y. Wang, X-L. Yu, S-R. Wang, S-H. Wu and Z-Y. Yuan, *Appl. Catal. B: Environ.*, 2008, **79**, 26.
- 16. T-Y. Ma and Z-Y. Yuan, Dalton Trans., 2010, 39, 9570.
- 17. Z. Boukha, J. L. Ayastuy, A. I-Gonzalez, B. P-Ayo, M. A. G-Ortiz and J. R. G-Velasco, *Appl. Catal. B: Environ.*, 2014, **160**, 629.
- K. Zhong, J. Xue, Y. Mao, C. Wang, T. Zhai, P. Liu, X. Xia, H. Li and Y. Tong, *RSC Advances*, 2012, 2, 11520.
- Z-P. Hu, Y-P. Zhu, Z-M. Gao, G. Wang, Y. Liu, X. Liu and Z-Y. Yuan, *Chem. Eng. J.*, 2016, **302**, 23.
- S. Zeng, K. Liu, L. Zhang, B. Qin, T. Chen, Y. Yin and H. Su, *J. Power Sources*, 2014, 261, 46.
- 21. J-L. Cao, G-J. Li, Y. Wang, G. Sun, X-D. Wang, B. Hari and Z-Y. Zhang, J. Environ. Chem. Eng., 2014, 2, 477.
- B. Gao, J. Deng, Y. Liu, Z. Zhao, X. Li, Y. Wang and H. Dai, *Chin. J. Catal.*, 2013, 34, 2223.

23. J. S. Moura, J. S. L. Fonseca, N. Bion, F. Epron, T. F. Silva, C. G. Maciel, J. M. Assaf and M. C. Rangel, *Catal. Today*, 2014, **228**, 40.