Supplementary Materials

Facile Preparing CoNi₂S₄@NiSe Nano Arrays on Compressed Nickel

Foam for High Performance Flexible Supercapacitor

Zhonghua Tang, Chunyang Jia*, Zhongquan Wan, Qianlong Zhou, Xingke Ye and Yucan Zhu

State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.

To further study the cycling stability of supercapacitor based on $CoNi_2S_4$ @NiSe@Nickel foam, the galvanostatic charge/discharge for 1200 cycles within 0–0.8 V at a current density of 0.015 A/cm² were recorded (Figure S1). It reveals that the supercapacitor can get a high retention between 200 to 1100 cycles, which is identical to the results of the cycling stability by CV.

Figure S1 The cycling performance of CoNi2S4@NiSe@Nickel foam by GCD

^{*} Corresponding author. Tel.: +86 28 83201991; Fax: +86 28 83202569. Email: cyjia@uestc.edu.cn (C. Y. Jia)

Electrode structure	Specific	Cycle stability	Reference
	capacitance		
Ni ₃ S ₂ @CNT	480 F/g ^[a]	88% (1500)	1
NiSe	1400 F/g ^[b]	70% (1000)	2
Nanoporous NiO film	1400 F/g ^[b]	97.9% (1500)	3
NiS@GNS@CNTs	1621 F/g ^[c]	68% (1000)	4
Ni(OH) ₂ /NiO/Ni	1070 F/g ^[d]		5
Ni(OH) ₂ @ Nickel foam	1125 F/g ^[b]		6
NiS@rGO	579 $F/g^{[a]}$	90.96% (1000-	7
		2000)	
Ni(OH)2@ZnO	2028 F/g ^[b]	68% (500)	8
Nickel sulfides@rGO	1000 F/g ^[b]	83.2% (1000)	9
Ni ₃ S ₂ @Nickel foam	1100 F/g ^[e]	91.4% (1000)	10
NiSe	851.91 F/g ^[f]	89.73% (1000)	This work
CoNi ₂ S ₄ @NiSe nano arrays	$1686.03 \ F/g^{[f]}$	97.59% (1000)	This work

Table S1 Electrochemical performance for $CoNi_2S_4$ @NiSe@Nickel foam in thisstudy compared with some other reported Ni-based compounds electrodes.

Special capacitance at [a] 5 A/g, [b] 10 A/g, [c] 9 A/g, [d] 15 A/g, [e] 6 A/g, [f] 5 mV/s

REFERENCE

- 1 Zhang, G.; Yu, L.; Hoster, H.; Lou, X. Nanoscale 2013, 5, 877-881.
- 2 Tang, C.; Pu, Z.; Liu, Q.; Asiri, A. M.; Sun, X.; Luo, Y.; He, Y. ChemElectroChem 2015, 2, 1903-1907.
- 3 Liang, K.; Tang, X.; Hu, W. J. Mater. Chem. 2012, 22, 11062-11067.
- 4 Chen, H.; Li, J.; Long, C.; Wei, T.; Ning, G.; Yan, J.; Fan, Z. J. Mar. Sci. Application 2014, **13**, 462-466.
- 5 Dai, X.; Chen, D.; Fan, H. Zhong, Y.; Chang, L.; Shao, H.; Wang, J.; Zhang, J.; Cao, C. *Electrochim. Acta*, 2015, 154, 128-135.
- 6 Hu, B.; Qin, X.; Asiri, A. M. Alamry, K. A.; Al-Youbi, A.; Sun, X. Electrochim. Acta 2013, 107 339-342.
- 7 Yang, J.; Duan, X.; Guo, W. Li, D.; Zhang, H.; Zheng, W. Nano Energy 2014, 5, 74-81.
- 8 Pu, Z.; Liu, Q.; Qusti, A. H. Al-Youbi, A.; Sun, X. *Electrochim. Acta* 2013, **109**, 252-255.
- 9 Xing, Z.; Chu, Q.; Ren, X. Tian, J.; Asiri, A. M.; Alamry, K. A.; Al-Youbi, A.; Sun, X. *Electrochem. Commun.* 2013, **32**, 9-13.
- 10 Huo, H.; Zhao Y.; Xu, C. J. Mater. Chem. A, 2014, 2, 15111-15117