## **Supporting Information for:**

## Organogelation of Cyanovinylcarbazole with Terminal Benzimidazole: AIE and Response for Gaseous Acid

Zhu Wu,<sup>[a]</sup> Jingbo Sun,<sup>[a]</sup> Zhenqi Zhang,<sup>[a]</sup> Peng Gong,<sup>[a]</sup> Pengcong Xue<sup>[a]</sup> Ran Lu\*<sup>[a]</sup>

State Key Laboratory of Supramolecular Structure and Materials, College of

Chemistry, Jilin University, Changchun, 130012, P. R. China

Email: luran@mail.jlu.edu.cn



Figure S1 Concentration-dependent fluorescence emission spectra of (a) **CCBM** and (b) **TCBM** ( $\lambda_{ex} = 365$  nm) in CH<sub>2</sub>Cl<sub>2</sub> (mol/L).



Figure S2 (a) UV-vis absorption and (b) fluorescence emission ( $\lambda_{ex} = 365$  nm) spectra of **TCBM** in solution and in gel phase in toluene/*tert*-pentanol (v/v = 1/15, 5.0 × 10<sup>-3</sup> M). Inset: Photos of **TCBM** in solution and in organogel irradiated at 365 nm.



Figure S3 (a) Fluorescence emission spectra of **TCBM** ( $\lambda_{ex} = 365$  nm); (b) plots of the intensity at 570 nm for **TCBM**, in THF/water with different  $f_w$ . The concentration of **TCBM** is maintained at 1.0 ×10<sup>-5</sup> M. Inset: Photos of **TCBM** in THF containing different amounts of water under 365 nm light.



Figure S4 (a) Fluorescence emission spectra of **TCBM** ( $1.0 \times 10^{-5}$  M) in THF/water with  $f_w$  of 95% ( $\lambda_{ex} = 365$  nm); (b) UV-vis absorption of **TCBM** in THF upon adding different amount of TFA. Insert: Stern-Volmer plot for **TCBM** towards TFA and photos of **TCBM** in THF/water with  $f_w$  of 95% under 365 nm light before and after adding 8 equiv. of TFA.



Figure S5 Optical microscope images of **CCBM** in the nanofibers-based films with thickness of 1.73  $\mu$ m (a) and 0.21  $\mu$ m (b); and optical microscope images of **TCBM** in the nanofibers-based films with thickness of 1.12  $\mu$ m (c) and 0.32  $\mu$ m (d), respectively.



Figure S6 Time-dependent fluorescence emission spectra of **CCBM** (a) and **TCBM** (c) in the nanofibers-based films with thickness of 1.73  $\mu$ m and 1.12  $\mu$ m, respectively, upon exposed to saturated vapor of TFA ( $\lambda_{ex} = 365$  nm); Time-course of fluorescence quenching at 560 nm for **CCBM** (b), and at 550 nm for **TCBM** (d) in the nanofibers-based films with thickness of 1.73  $\mu$ m and 1.12  $\mu$ m, respectively. Insert: Photos of the films based on **CCBM** and **TCBM** before and after exposed to TFA (180 ppm for inset of 5b and 240 ppm for inset of 5d), respectively.



Figure S7 Fluorescence emission spectra of **CCBM** (a) and **TCBM** (c) in nanofibers-based films upon exposed to saturated TFA and NH<sub>3</sub> vapors; Cycles of the fluorescence quenching and recovery of **CCBM** at 560 nm (b) and **TCBM** at 550 nm (d) in nanofibers-based films exposed to the vapors of TFA and NH<sub>3</sub>, repeatedly  $(\lambda_{ex} = 365 \text{ nm})$ .



Figure S8 UV-vis absorption spectra of **CCBM** in nanofibers-based film upon exposed to different amount of TFA vapors (0 to 120 ppm).



Figure S9 Fluorescence emission spectra of **CCBM** in the nanofibers-based films with the thickness of 0.21  $\mu$ m before and after exposed to saturated vapors of (a) HNO<sub>3</sub>, (b) HCl, (c) CH<sub>3</sub>COOH, (d) H<sub>2</sub>SO<sub>4</sub>, (e) H<sub>3</sub>PO<sub>4</sub> and (f) HCOOH at room temperature ( $\lambda_{ex} = 365$  nm).



Figure S10 Fluorescence emission spectra of **TCBM** in the nanofibers-based films with the thickness of 0.32  $\mu$ m before and after exposed to saturated vapors of (a) HNO<sub>3</sub>, (b) HCl, (c)CH<sub>3</sub>COOH, (d) H<sub>2</sub>SO<sub>4</sub>, (e) H<sub>3</sub>PO<sub>4</sub> and (f) HCOOH in room temperature ( $\lambda_{ex} = 365$  nm).



Figure S11 Fluorescence emission spectra of **CCBM** (a) and **TCBM** (b) in nanofibers-based films upon exposure to the saturated vapors of CHCl<sub>3</sub>, CH<sub>3</sub>OH, C<sub>2</sub>H<sub>5</sub>OH, H<sub>2</sub>O and DMF for 30 s ( $\lambda_{ex} = 365$  nm).



Figure S12 <sup>1</sup>H NMR (400 MHz) spectrum of **CCBM** in CDCl<sub>3</sub>.



Figure S13 <sup>13</sup>C NMR (100 MHz) spectrum of **CCBM** in CDCl<sub>3</sub>.



Figure S14 MALDI-TOF mass spectrum of CCBM.



Figure S15 <sup>1</sup>H NMR (400 MHz) spectrum of **TCBM** in DMSO-d<sub>6</sub>.



Figure S16  $^{13}$ C NMR (100 MHz) spectrum of **TCBM** in CDCl<sub>3</sub>.



Figure S17 MALDI-TOF mass spectrum of **TCBM**.