Supporting Information

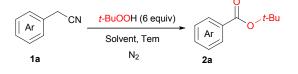
An efficient method for the preparation of *tert*-butyl esters from benzyl cyanide and *tert*-butyl hydroperoxide under the metal free condition

Xiuling Chen, Yan Li, Minghu Wu,* haibing Guo, longqiang Jiang, jian Wang, Shaofa Sun*

Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Life Science, Hubei University of Science and Technology, Xianning 437100 (China)

Contents

General remarks	2
General procedure	2
Optimization of reaction condition Effect of catalyst loadingEffect of solvent	2
¹ H and ¹³ C NMR data of products	3
References	6
Copies of ¹ H and ¹³ C NMR spectra	7-27


1. General remarks

All non-aqueous reactions and manipulations were performed in air atmosphere using standard Schlenk techniques. All solvents before use were dried, degassed by standard methods, and stored under nitrogen. The reactions were monitored by GC and GC-MS. The ¹H NMR and ¹³C NMR spectra were recorded on a Varian INOVA-400 spectrometer at 400 MHz and 100 MHz respectively (Hunan university), and chemical shifts were reported in parts per million (ppm) downfield from TMS using the solvent resonance as internal standard. Flash column chromatography was performed using silica gel 30-60 µm. GC-MS results were recorded on GC-MS QP2010, and GC analysis was performed on GC 7820A (Hunan university). The electron ionization (EI) method was used as the ionization method for the HRMS measurement (Thermo Finnigan MAT 95 XP, Hunan University). Melting point was recorded on X-4 (digital display micro melting point measuring instrument, Gonyiyuhua). Benzonitriles were purchased from Energy Chemical, Alfa Aesar, Aladdin or Maya Reagent; 2-phenylacetonitrile was dried and degassed by standard methods and stored under nitrogen before use. The TBHP was purchased from Energy Chemical, dried by MgSO₄ before use.

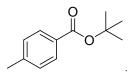
2. General procedure

5 mol% catalyst, 0.2 mmol benzonitriles, 1.2 mmol TBHP, 110 mg 4Åx MS were dissolved in 2 mL CH₃CN under N₂ atmosphere and stirred at 60 °C in sealed tube. After completion of the reaction, the resulting solution was cooled to room temperature, washed with saturated NaCO₃ aqueous solution, and extracted with CHCl₃ three times. The organic layer was dried over anhydrous MgSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel and eluted with petroleum ether to afford the desired product.

3. Optimization of reaction conditions^a

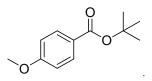
Entry	Metal cat. (5 mol %)	Ms 4 A ^b	Solvent	Yield (2a %) ^c
1	CuCl	-	acetone	34
2	CuCl	-	DCE	35
3	CuCl	-	1,4-dioxane	40
4	CuCl	-	THF	36
5	CuCl	-	toluene	37
6	CuCl	-	n-hexane	39
7	CuCl	-	DMSO	27
8	CuCl	-	DMF	35
9	CuCl	-	CH ₃ CN	45
10	MnCl ₂	-	CH ₃ CN	41
11	MnCO ₃	-	CH ₃ CN	20
12	FeCl ₃	-	CH ₃ CN	18
13	AgNO ₃	-	CH ₃ CN	41
14		-	CH ₃ CN	46
15		+	CH ₃ CN	89
16 ^d		+	CH ₃ CN	86
17 ^e		+	CH ₃ CN	60
18 ^f		+	CH ₃ CN	29
19 ^g		+	CH ₃ CN	

^aReaction conditions: 2-phenylacetonitrile **1a** (0.2 mmol), TBHP (1.2 mmol), cat (5 mol%), additive (110 mg), solvent (2 ml), in 25 mL schlenk tube, 60 °C, N₂, 16 h. ^bAbbreviation: + or - shows the presence or absence of 4A

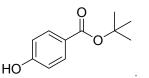

molecular sieves. °GC yields based on 1a using *n*-hexadecane as internal standard. ^{*d*}80 °C. ^{*e*}100 °C. ^{*f*}40 °C. ^{*g*}di-*tert*butyl peroxide (DTBP) was employed as oxidant under N₂ atmosphere.

¹H NMR and ¹³C NMR data of products

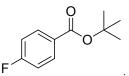
tert-butyl benzoate (2a)¹


Following the general procedure (petroleum ether), **2a** was obtained as a white liquid, isolated yield: 82%. ¹H NMR (CDCl₃, 400 MHz): δ 7.98 (d, 2H, *J* = 4.0 Hz), 7.51 (t, 1H, *J* = 7.4 Hz), 7.41 (t, 2H, *J* = 7.6 Hz), 1.60 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 165.8, 132.4, 132.0, 129.4, 128.2, 81.0, 28.2; GC-MS: m/z = 178.

tert-butyl 4-methylbenzoate(2b)1


Following the general procedure (petroleum ether), **2b** was obtained as a white liquid, isolated yield: 81%. ¹H NMR (CDCl₃, 400 MHz): δ 7.76 (d, 2H, *J* = 8.4 Hz), 7.17 (d, 2H, *J* = 8.0 Hz), 2.33 (s, 3H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 164.5, 144.2, 129.3, 129.1, 124.9, 83.9, 26.3, 21.7; GC-MS: m/z = 192.

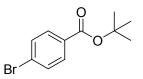
tert-butyl 4-methoxybenzoate (2c)¹


Following the general procedure (petroleum ether), **2c** was obtained as a white liquid, isolated yield: 82%. ¹H NMR (CDCl₃, 400 MHz): δ 7.93 (d, 2H, *J* = 8.8 Hz), 6.88 (d, 2H, *J* = 8.8 Hz), 3.84 (s, 3H), 1.58 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 165.6, 163.0, 131.4, 124.5, 113.4, 80.5, 55.4, 28.3; GC-MS: m/z = 208.

tert-butyl 4-hydroxybenzoate (2d)²

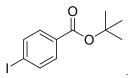
Following the general procedure (petroleum ether), **2d** was obtained as a white solid, mp = 128-130 °C isolated yield: 72%. ¹H NMR (CDCl₃, 400 MHz): δ 7.88 (d, 2H, *J* = 8.8 Hz), 6.85 (d, 2H, *J* = 8.8 Hz), 1.59 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 165.6, 166.3, 160.1, 131.7, 124.0, 115.1, 81.0, 28.3; GC-MS: m/z = 194.

tert-butyl 4-fluorobenzoate (2e)³

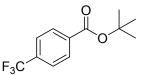


Following the general procedure (petroleum ether), **2e** was obtained as a pale yellow liquid, isolated yield: 81%. ¹H NMR (CDCl₃, 400 MHz): δ 7.98 (d, 2H, *J* = 4.4 Hz), 7.07 (d, 2H, *J* = 8.6 Hz), 1.59 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 164.5 (d, *J*_{F-C} = 251.3 Hz), 163.8, 130.8 (d, *J*_{F-C} = 9.2 Hz), 127.2 (d, *J*_{F-C} = 2.9 Hz), 114.1 (d, *J*_{F-C} = 21.7 Hz), 80.2, 27.2; ¹⁹F NMR (376 MHz, CDCl₃): δ -106.9 (s, 1F); GC-MS: m/z = 196. tert-butyl 4-chlorobenzoate (2f)1

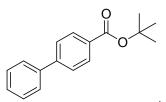
C


Following the general procedure (petroleum ether), **2f** was obtained as white liquid, isolated yield: 78%. ¹H NMR (CDCl₃, 400 MHz): δ 7.91 (d, 2H, *J* = 8.4 Hz), 7.36 (d, 2H, *J* = 8.4 Hz), 1.59 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 164.8, 138.8, 130.8, 130.4, 128.4, 81.4, 28.1; GC-MS: m/z = 212.

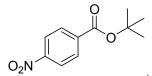
tert-butyl 4-bromobenzoate (2g)1


Following the general procedure (petroleum ether), **2g** was obtained as a pale yellow liquid, isolated yield: 83%. ¹H NMR (CDCl₃, 400 MHz): δ 7.83 (d, 2H, *J* = 8.4 Hz), 7.53 (d, 2H, *J* = 8.4 Hz), 1.58 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 165.0, 131.5, 131.0, 130.9, 127.4, 81.5, 28.2; GC-MS: m/z = 256.

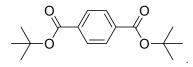
tert-butyl 4-iodobenzoate (2h)⁴


Following the general procedure (petroleum ether), **2h** was obtained as a yellow liquid, isolated yield: 69%. ¹H NMR (CDCl₃, 400 MHz): δ 7.74 (d, 2H, *J* = 8.4 Hz), 7.67 (d, 2H, *J* = 8.8 Hz), 1.57 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 165.2, 137.5, 131.5, 131.0, 100.1, 81.4, 28.2; GC-MS: m/z = 303.

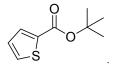
tert-butyl 4-(trifluoromethyl)benzoate (2i)⁵


Following the general procedure (petroleum ether), **3a** was obtained as a pale yellow liquid, isolated yield: 78%. ¹H NMR (CDCl₃, 400 MHz): δ 8.09 (d, 2H, *J* = 8.4 Hz), 7.66 (d, 2H, *J* = 8.4 Hz), 1.60 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 164.5, 135.2, 134.0 (q, *J*_{F-C} = 32,3 Hz), 129.8, 125.2 (q, *J*_{F-C} = 3.8 Hz), 123.7 (q, *J*_{F-C} = 270.9 Hz), 81.9, 28.1; ¹⁹F NMR (376 MHz, CDCl₃): δ -63.0 (s, 3F); GC-MS: m/z = 246.

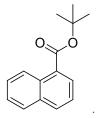
tert-butyl [1,1'-biphenyl]-4-carboxylate (2j)⁶


Following the general procedure (petroleum ether), **2j** was obtained as a pale yellow liquid, isolated yield: 73%. ¹H NMR (CDCl₃, 400 MHz): δ 8.09 (d, 2H, *J* = 8.0 Hz), 7.65 (t, 4H, *J* = 8.4 Hz), 7.47 (t, 2H, *J* = 7.6 Hz), 7.40 (t, 1H, *J* = 7.4 Hz), 1.65 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 165.7, 145.2, 140.2, 130.8, 130.0, 128.9, 128.0, 127.3, 126.9, 81.0, 28.3; GC-MS: m/z = 254.

tert-butyl 4-nitrobenzoate (2k)3


Following the general procedure (petroleum ether), **2k** was obtained as a white solid, mp = 112-114 °C isolated yield: 90%. ¹H NMR (CDCl₃, 400 MHz,): δ 8.23 (d, 2H, *J* = 8.8 Hz), 8.12 (d, 2H, *J* = 8.8 Hz), 1.60 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 163.7, 150.2, 137.4, 130.5, 123.3, 82.6, 28.1; HRMS (EI): calcd for C₁₁H₁₃NO₄: 223.0845; found: 223.0882.

di-tert-butyl terephthalate (21)6


Following the general procedure (petroleum ether), **2l** was obtained as white solid, mp = 117-119 °C, isolated yield: 72%. ¹H NMR (CDCl₃, 400 MHz): δ 8.00 (s, 4H), 1.60 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 165.1, 135.4, 129.2, 81.6, 28.1; GC-MS: m/z = 278.

tert-butyl thiophene-2-carboxylate (2m)¹

Following the general procedure (petroleum ether), **2m** was obtained as a pale yellow liquid, isolated yield: 72%. ¹H NMR (CDCl₃, 400 MHz): δ 7.70 (d, 1H, *J* = 3.6 Hz), 7.48 (d, 1H, *J* = 5.2 Hz), 7.05 (t, 1H, *J* = 4.2 Hz), 1.57 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 161.6, 135.9, 132.7, 131.6, 127.5, 81.7, 28.2; GC-MS: m/z = 184.

tert-butyl-1-naphthoate (2n)¹

Following the general procedure (petroleum ether), **2n** was obtained as a pale yellow liquid, isolated yield: 80%. ¹H NMR (CDCl₃, 400 MHz): δ 8.87 (d, 1H, *J* = 8.4 Hz), 8.09 (d, 1H, *J* = 7.2 Hz), 7.98 (d, 1H, *J* = 8.0 Hz), 7.87 (d, 1H, *J* = 8.0 Hz), 7.60 (t, 1H, *J* = 7.6 Hz), 7.47-7.54 (m, 2H), 1.69 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 133.9, 132.7, 131.2, 129.6, 129.3, 128.5, 127.4, 126.0, 125.8, 124.5, 81.5, 28.4; GC-MS: m/z = 228.

tert-butyl-2-naphthoate (20)¹

Following the general procedure (petroleum ether), **20** was obtained as a white solid, mp = 81-83 °C, isolated yield: 84%. ¹H NMR (CDCl₃, 400 MHz): δ 8.55 (s, 1H), 8.03 (d, 1H, *J* = 8.4 Hz), 7.94 (d, 1H, *J* = 8.0 Hz), 7.86 (d, 2H, *J* = 5.2 Hz), 7.51-7.59 (m, 1H), 1.66 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 166.0, 135.3, 132.5, 130.7, 129.3, 128.0, 127.9, 127.7, 126.5, 125.4, 81.2, 28.3; GC-MS: m/z = 228.

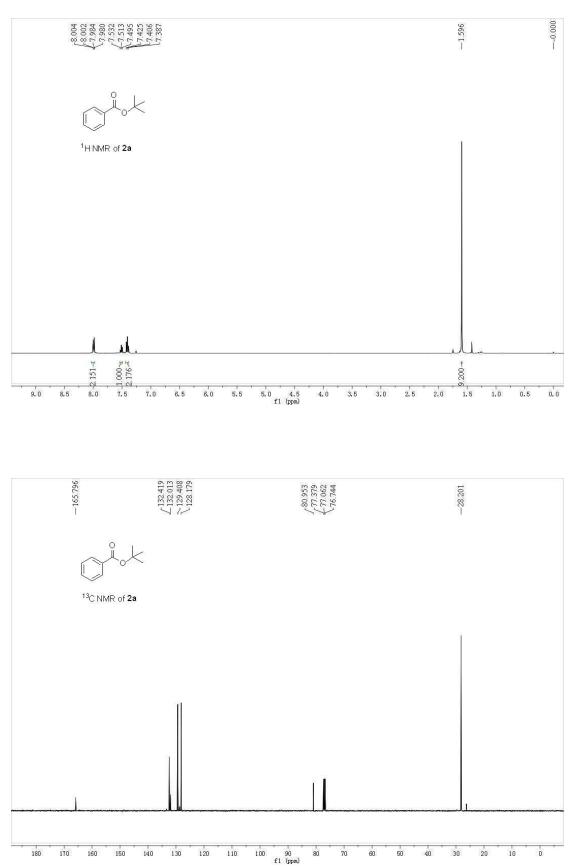
tert-pentyl 4-methoxybenzoate (2p)

Following the general procedure (petroleum ether), **3a** was obtained as a pale yellow liquid, isolated yield: 82%. ¹H NMR (CDCl₃, 400 MHz): δ 7.86 (d, 2H, *J* = 8.8 Hz), 7.80 (d, 2H, *J* = 8.2 Hz), 3.75 (s, 3H), 1.82 (q, 2H, *J* = 7.6 Hz), 1.58 (s, 9H), 0.87 (t, 3H, *J* = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 165.5, 163.0, 131.3, 124.5, 113.4, 82.9, 55.4, 33.8, 25.7, 8.3; HRMS (EI): calcd for C₁₃H₁₈O₃: 222.1256; found: 222.1241.

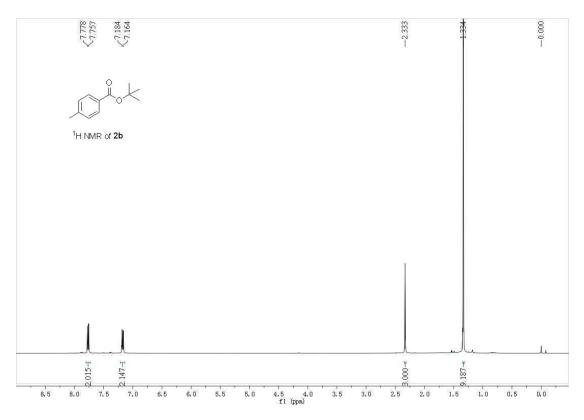
tert-pentyl 4-bromobenzoate (2q)

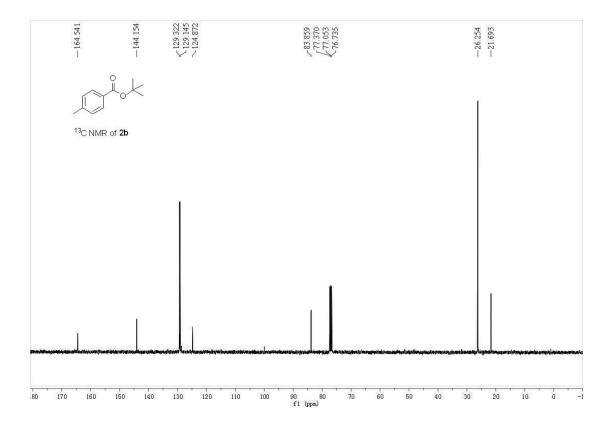
Following the general procedure (petroleum ether), **2q** was obtained as a pale yellow liquid, isolated yield: 88%. isolated yield: 93%. ¹H NMR (CDCl₃, 400 MHz, TMS): δ 7.83 (d, 2H, *J* = 8.4 Hz), 7.53 (d, 2H, *J* = 8.4 Hz), 1.91 (q, 2H, *J* = 7.4 Hz), 1.55 (s, 9H), 0.95 (t, 3H, *J* = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 164.9, 131.5, 131.0, 130.9, 127.4, 83.9, 33.7, 26.0, 8.3; HRMS (EI): calcd for C₁₂H₁₅BrO₂: 270.0255; found: 270.0269.

tert-pentyl 4-nitrobenzoate (2r)

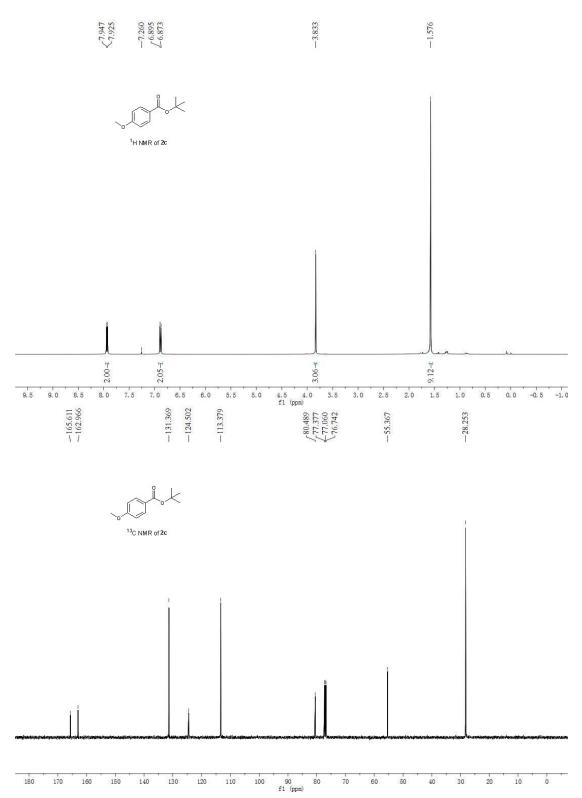

Following the general procedure (petroleum ether), **2r** was obtained as a pale yellow liquid, isolated yield: 83%. ¹H NMR (CDCl₃, 400 MHz): δ 8.23 (d, 2H, *J* = 8.8 Hz), 8.12 (d, 2H, *J* = 8.8 Hz), 1.93 (q, 2H, *J* = 7.6 Hz), 1.57 (s, 9H), 0.95 (t, 3H, *J* = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 163.6, 150.2, 137.4, 130.5, 123.4, 85.1, 33.6, 25.5, 8.3; HRMS (EI): calcd for C₁₂H₁₅NO₄: 237.1001; found: 237.1018.

4. References

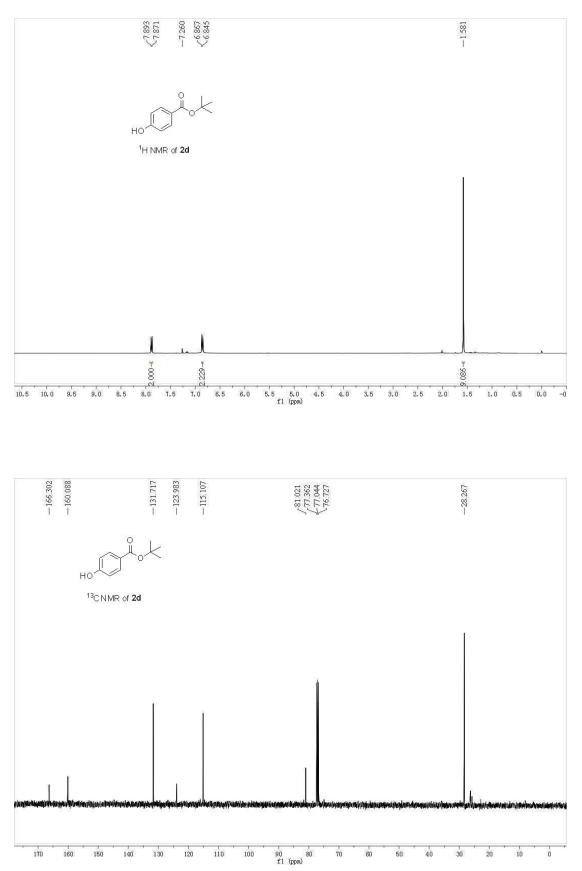

- 1. S. Pramanik, R. R. Reddy and P. Ghorai, Org. Lett., 2015, 17, 1393-1396.
- C. Marculescu, H. Kossen, R. E. Morgan, P. Mayer, S.A. Fletcher, B. Tolner, K. A. Chester, L. H. Jones and J. R. Baker, *Chem. Commun.*, 2014, 50, 7139-7142.
- 3. N. Zhang, R. Yang, D. Zhang-Negrerie, Y. Du and K. Zhao, J. Org. Chem., 2013, 78, 8705-8711.
- T. C. Wang, W. Bury, D. A. Gómez-Gualdrón, N. A. Vermeulen, J. E. Mondloch, P. Deria, K. Zhang, P. Z. Moghadam, A. A. Sarjeant, R. Q. Snurr, J. F. Stoddart, J. T. Hupp and O. K. Farha, *J. Am. Chem. Soc.*, 2015, 137, 3585-3591.
- 5. Z. Xin, T. M. Gøgsig, A. T. Lindhardt and T. Skrydstrup, Org. Lett., 2012, 14, 84-287.
- 6. H. Zhang, R. Shi, A. Ding, L. Lu, B. Chen and A. Lei, Angew. Chem. Int. Ed., 2012, 51, 12542-12545.


5. Copies of ¹H, ¹³C NMR and ¹⁹F NMR spectra

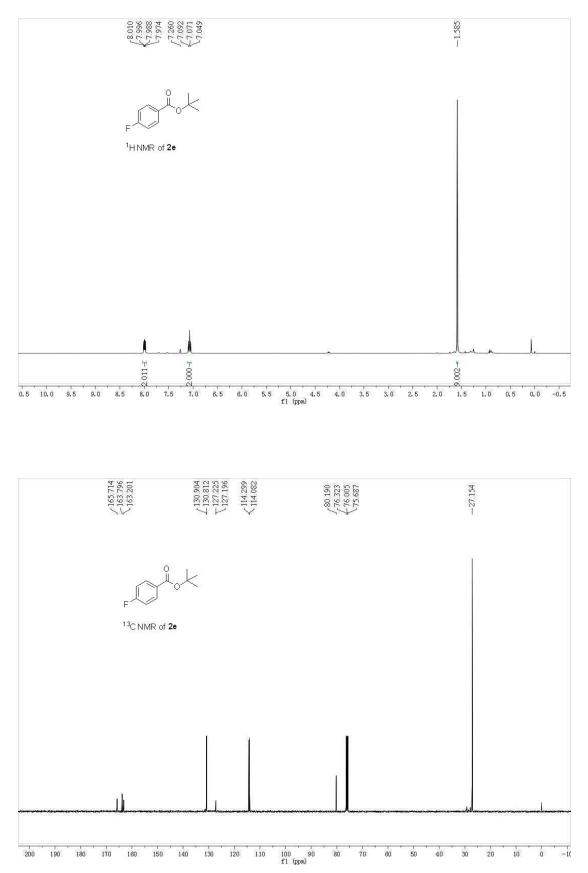
¹H NMR and ¹³C NMR of **2a**

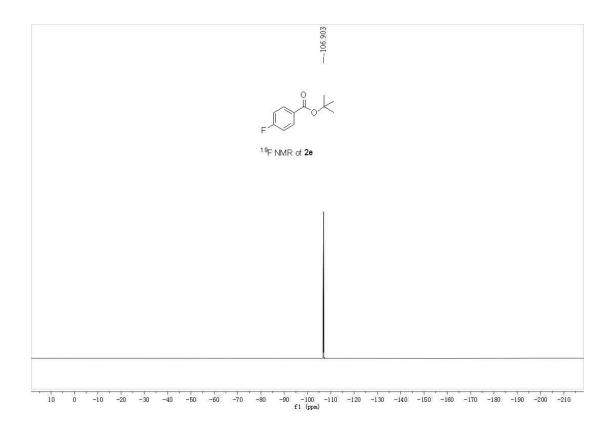


¹H NMR and ¹³C NMR of **2b**

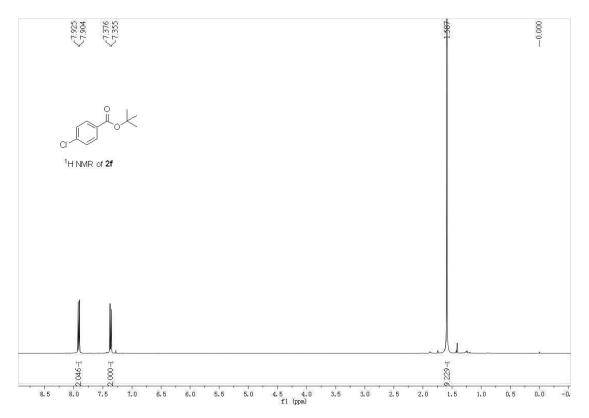


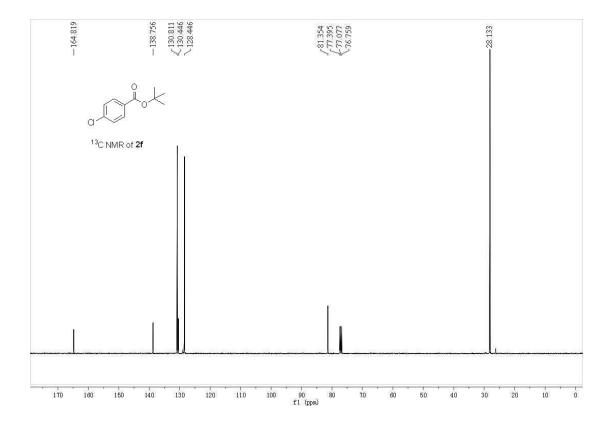
¹H NMR and ¹³C NMR of **2c**

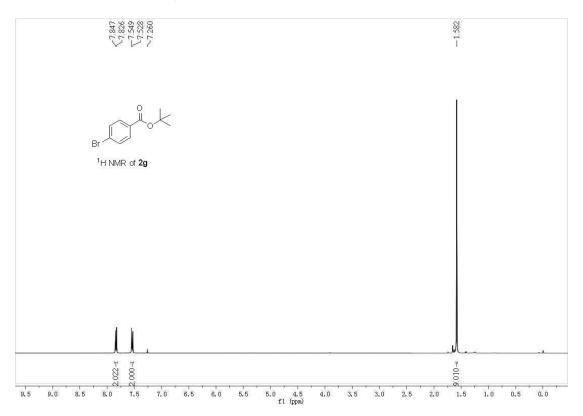


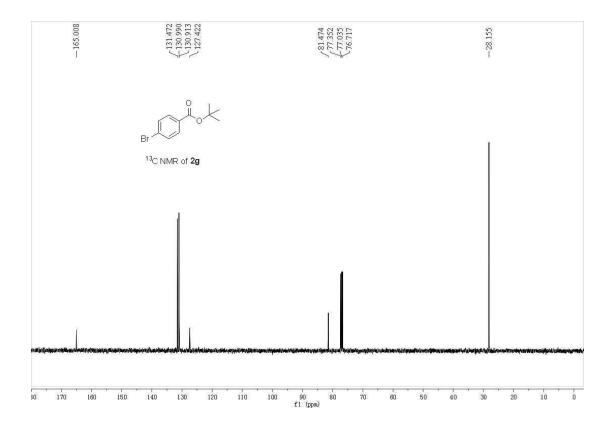

9

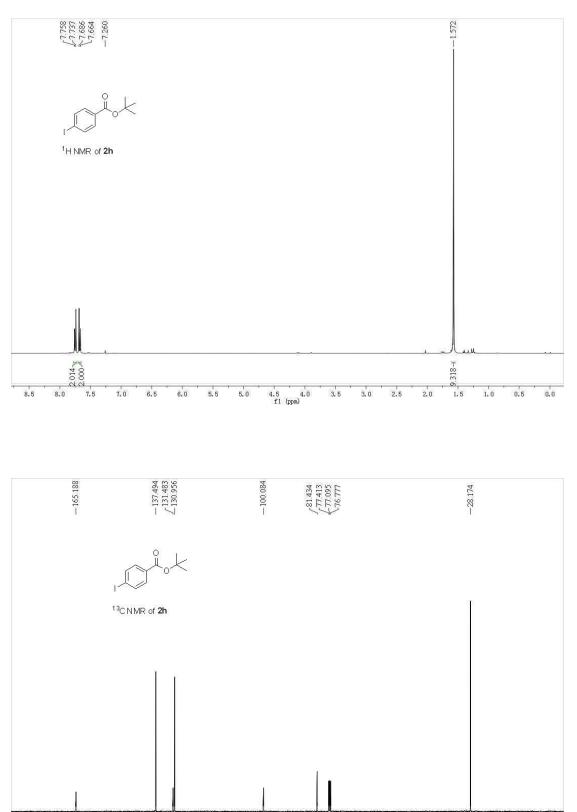
¹H NMR and ¹³C NMR of **2d**



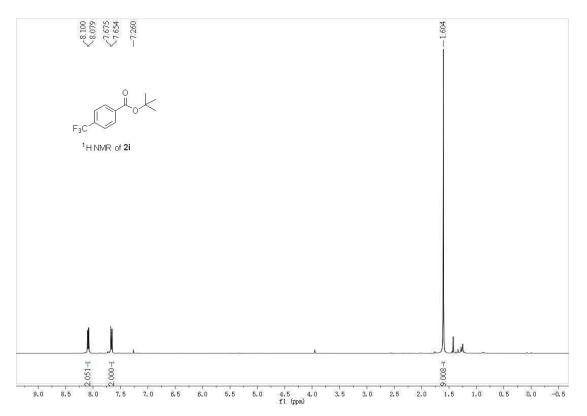

¹H NMR, ¹³C NMR and ¹⁹F NMR of **2e**

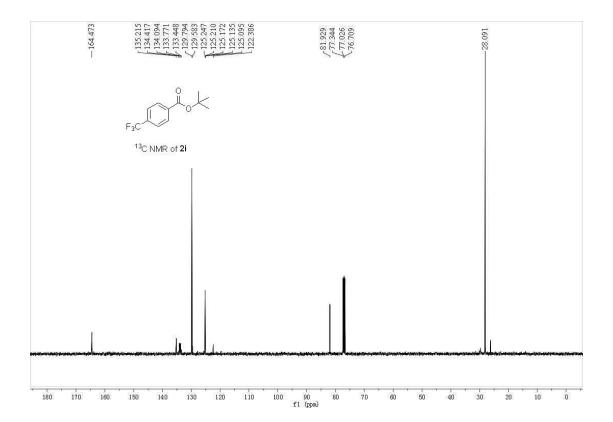


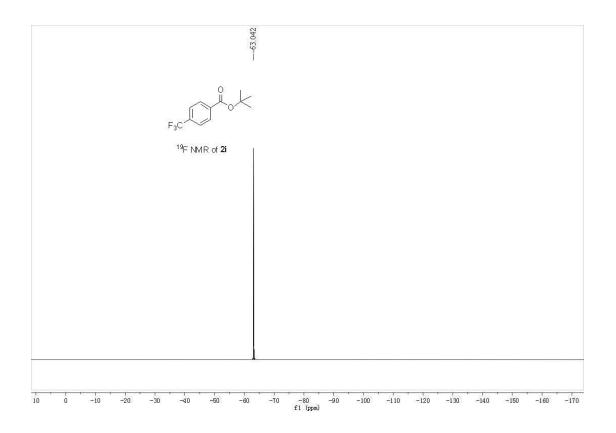

¹H NMR and ¹³C NMR of **2f**



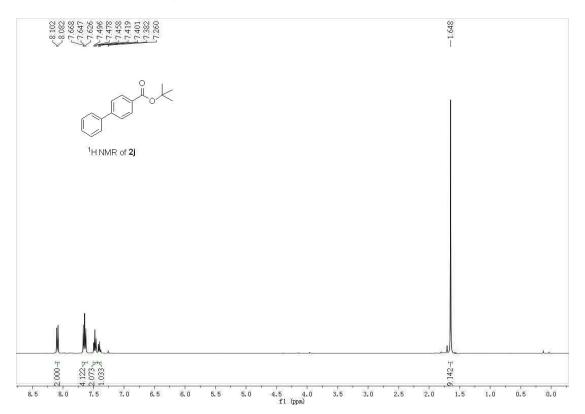
¹H NMR and ¹³C NMR of **2g**

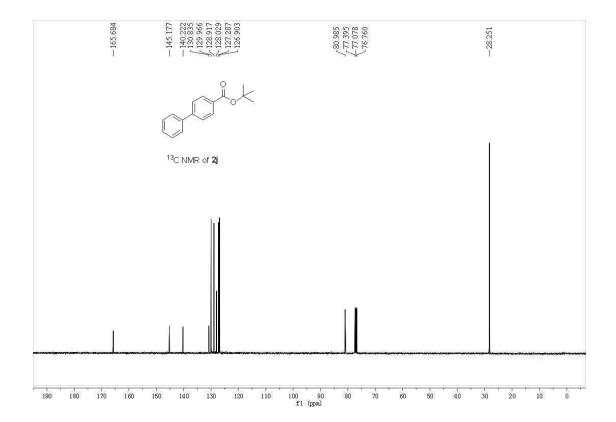


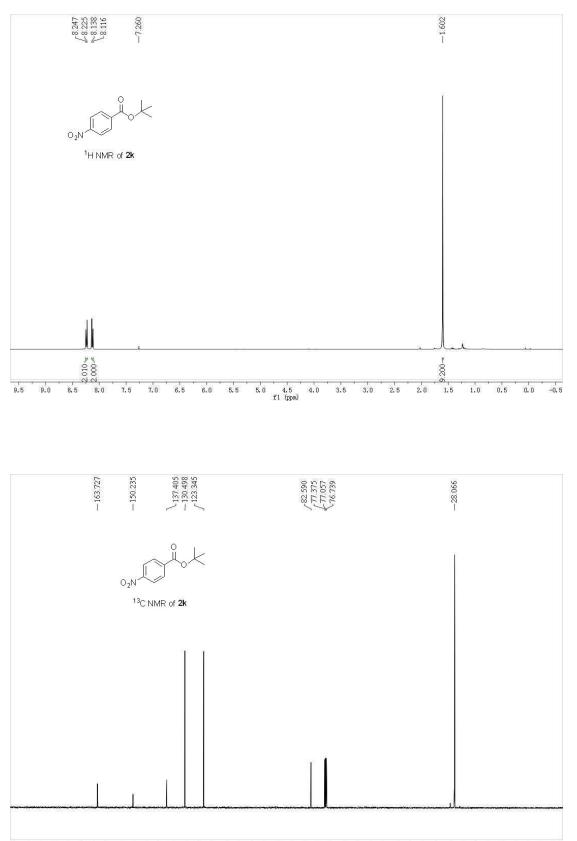

¹H NMR and ¹³C NMR of **2h**

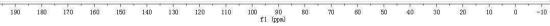


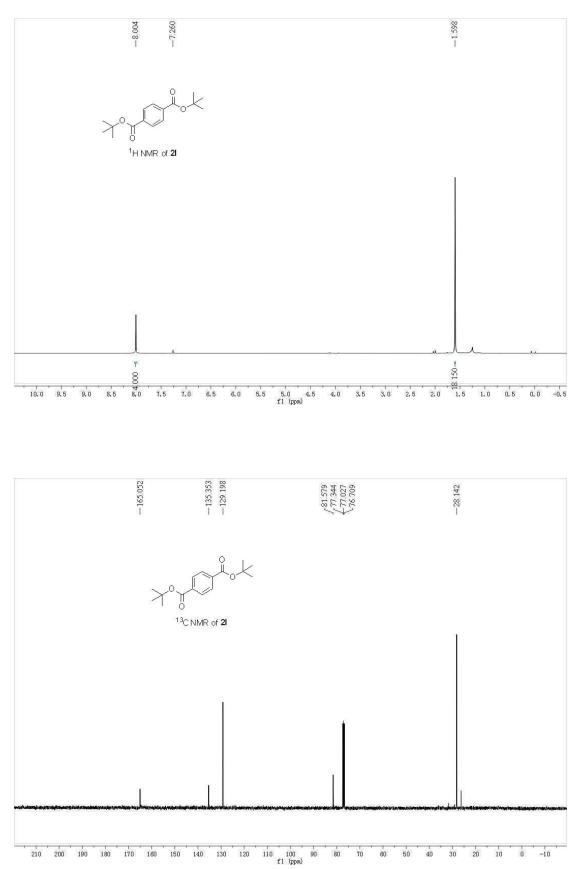
100 90 f1 (ppm)


¹H NMR,¹³C NMR and ¹⁹F NMR of **2i**

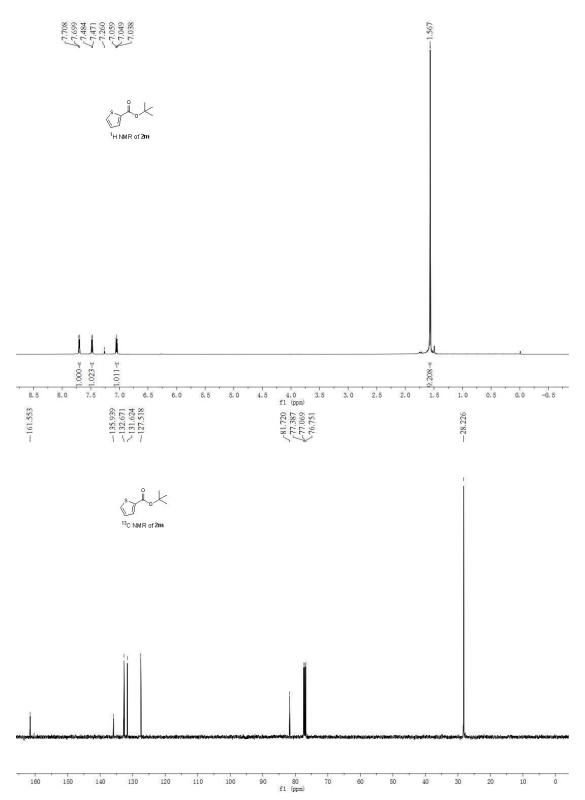


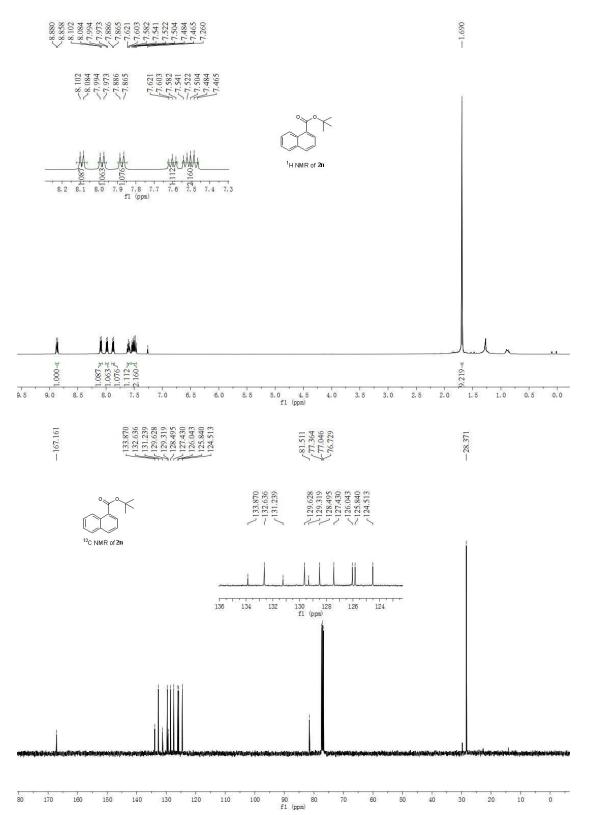



¹H NMR and ¹³C NMR of **2**j

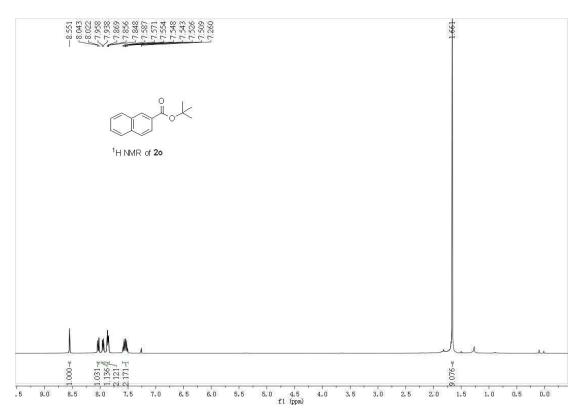


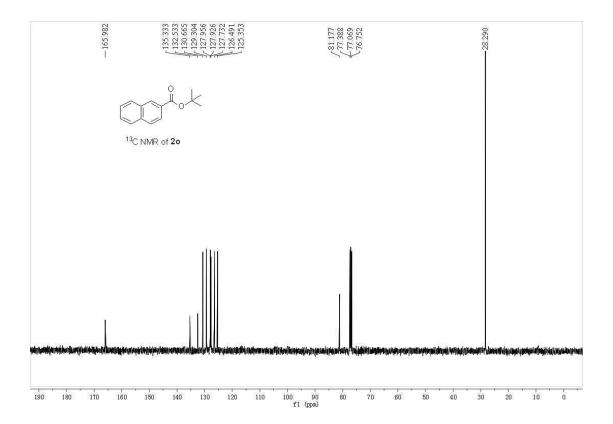
¹H NMR and ¹³C NMR of **2**k

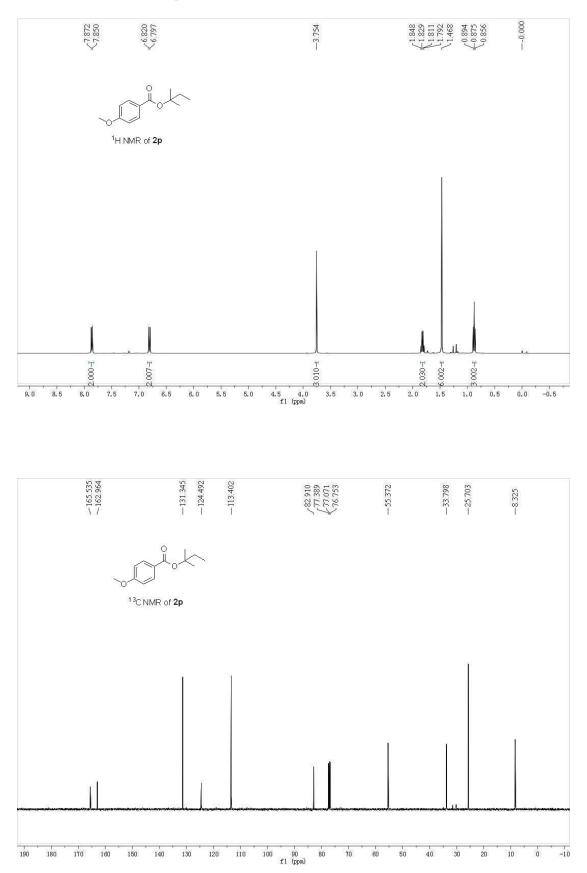



¹H NMR and ¹³C NMR of **2**I

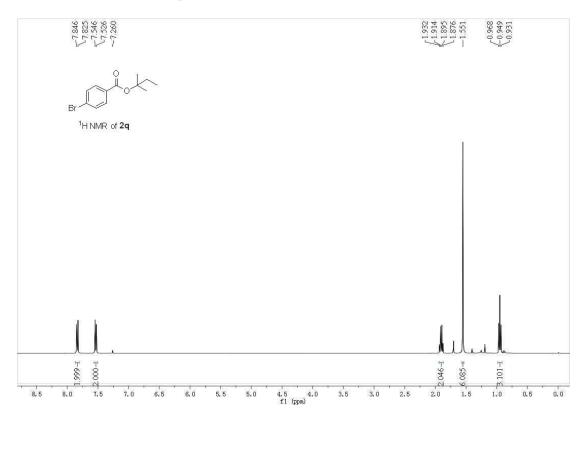
¹H NMR and ¹³C NMR of **2m**

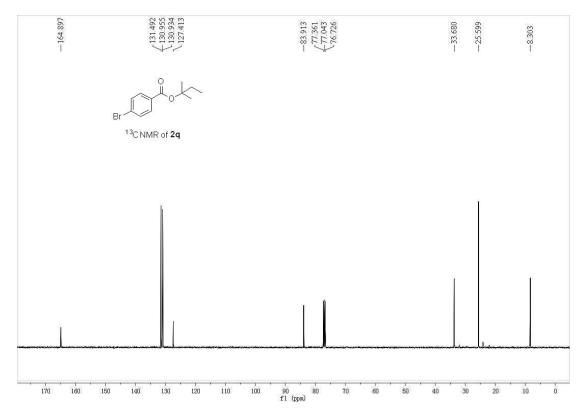



¹H NMR and ¹³C NMR of **2n**

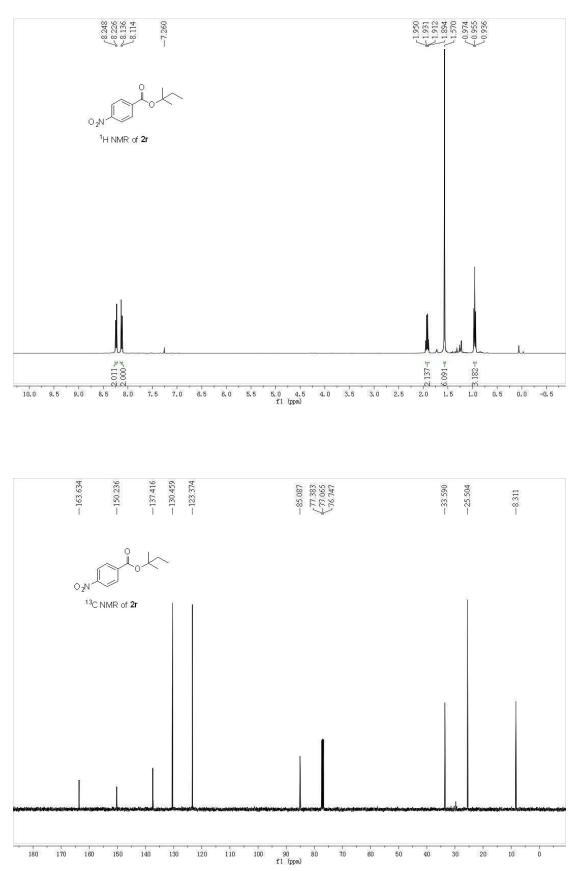

22

¹H NMR and ¹³C NMR of **20**





¹H NMR and ¹³C NMR of **2p**



¹H NMR and ¹³C NMR of **2q**

¹H NMR and ¹³C NMR of **2r**

