Bromine substituted aminonaphthoquinones: Synthesis, Characterization, DFT and metal ion binding studies

Gunjan Agarwal^a, Dipali N. Lande^a, Debamitra Chakrovarty^b, Shridhar P. Gejji^a, Prajkta Gosavi-Mirkute^a, Amit Patil^a Sunita Salunke-Gawali^{*a}

Scheme 2 General reaction for the synthesis of ligands

Figure Legends

Fig.S1a	FT-IR spectrum of DBrNQ in region 4000 cm ⁻¹ to 400 cm ⁻¹
Fig.S1b	FT-IR spectrum of 2MPA in region 4000 cm ⁻¹ to 400 cm ⁻¹
Fig.S1c	FT-IR spectrum of 3MPA in region 4000 cm ⁻¹ to 400 cm ⁻¹
Fig.S1d	FT-IR spectrum of 2EPA in region 4000 cm ⁻¹ to 400 cm ⁻¹
Fig.S1e	FT-IR spectrum of 2AMT in region 4000 cm ⁻¹ to 400 cm ⁻¹
Fig.S1f	FT-IR spectrum of 2AET in region 4000 cm ⁻¹ to 400 cm ⁻¹
Fig.S2	Overlapped FT-IR spectra of 2MPA, 3MPA, 2AMT and 2EPA and 2AET
Fig. S3a	¹ HNMR spectrum of 2MPA in CDCl ₃
Fig. S3b	³ CNMR spectrum of 2MPA in CDCl ₃
Fig. S3c	DEPT NMR spectrum of 2MPA in CDCl ₃
Fig.S3d	gHSQCAD NMR spectrum of 2MPA in CDCl ₃
Fig.S3e	gDQCOSY NMR spectrum of 2MPA in CDCl ₃
Fig.S4a	¹ HNMR spectrum of 3MPA in CDCl ₃
Fig.S4b	¹³ CNMR spectrum of 3MPA in CDCl ₃
Fig.S4c	DEPT NMR spectrum of 3MPA between 20-160 ppm in CDCl ₃

Fig.S4d	DEPT NMR spectrum of 3MPA between 122-150 ppm in CDCl ₃
Fig.S4e	gHSQCAD NMR spectrum of 3MPA in CDCl ₃
Fig.S4f	gDQCOSY NMR spectrum of 3MPA in CDCl ₃
Fig.S4g	Magnified view of gDQCOSY NMR spectrum of 3MPA in CDCl ₃
Fig.S5a	¹ HNMR spectrum of 2AMT in CDCl ₃
Fig.S5b	¹³ CNMR spectrum of 2AMT in CDCl ₃ between 120-180 ppm
Fig.S5c	¹³ CNMR spectrum of 2AMT in CDCl ₃ between 43-80 ppm
Fig.S5d	¹³ CNMR spectrum of 2AMT in CDCl ₃ between 125-135 ppm
Fig.S5e	DEPT NMR spectrum of 2AMT in CDCl ₃
Fig.S5f	gHSQCAD NMR spectrum of 2AMT in CDCl ₃
Fig.S5g	gDQCOSY NMR spectrum of 2AMT in CDCl ₃
Fig.S6a	¹ HNMR spectrum of 2EPA in CDCl ₃ between 6.6-9.0 ppm
Fig.S6b	¹ HNMR spectrum of 2EPA in CDCl ₃ between 0-4.5 ppm
Fig.S6c	¹³ CNMR spectrum of 2EPA in CDCl ₃
Fig.S6d	DEPT NMR spectrum of 2EPA in CDCl ₃
Fig.S6e	gHSQCAD NMR spectrum of 2EPA in CDCl ₃
Fig.S6f	gDQCOSY NMR spectrum of 2EPA in CDCl ₃
Fig.S6g	Magnified view of gDQCOSY NMR spectrum of 2EPA in CDCl ₃
Fig.S7a	¹ HNMR spectrum of 2AET in CDCl ₃ between 3.0-9.0 ppm
Fig.S7b	¹ HNMR spectrum of 2AET in CDCl ₃ between 6.0-8.5 ppm
Fig.S7c	¹ HNMR spectrum of 2AET in CDCl ₃ between 1.0-3.5 ppm
Fig.S7d	Additional ¹ HNMR data of 2AET in CDCl ₃
Fig.S7e	¹³ CNMR spectrum of 2AET in CDCl ₃ between 20-80 ppm
Fig.S7f	¹³ CNMR spectrum of 2AET in CDCl ₃ between 123-180 ppm
Fig.S7g	DEPT NMR spectrum of 2AET in CDCl ₃ between 0-60 ppm
Fig.S7h	DEPT NMR spectrum of 2AET in CDCl ₃ between 124-136 ppm
Fig.S7i	gHSQCAD NMR spectrum of 2AET in CDCl ₃
Fig.S7j	gDQCOSY NMR spectrum of 2AET in CDCl ₃
Fig.S7k	Magnified view of gDQCOSY NMR spectrum of 2AET in CDCl ₃
Fig.S8	UV-visible spectra for

Fig.S9	a) Neighboring molecules of 2MPA, b) The planes of naphthoquinone ring and the pyridyl ring of 2MPA
Fig.S10	a) Neigboring molecules of 3MPA, b) Planes of naphthoquinone ring with pyridyl ring, c) Torsion angle of 3MPA
Fig.S11	a) Neighboring molecules of 2AMT, b) The planes of naphthoquinone ring and the pyridyl ring of 2AMT
Fig.S12	The planes of naphthoquinone ring and the pyridyl ring of 2EPA
Fig.S13	a) Neighboring contacts of 2AET molecules, b) The planes of naphthoquinone ring and the pyridyl ring of 2AET
Fig.S14	UV-Visible spectra of a)2EPA (10 ⁻⁴ M) with metal ions (10 ⁻⁴ M) in methanol, b) In methanol and triethylamine, c) 2EPA in methanol and with metal ions (10 ⁻⁴ M) in water, d) 2EPA in methanol and with metal ions (10 ⁻⁴ M) in water and triethylamine
Fig.S15	Job plots obtained for 2MPA with Cu ²⁺ ions in methanol, methanol-water, and methanol-water-triethylamine
Fig.S16	Job plots obtained for 2EPA with Cu ²⁺ ions in methanol and methanol- triethylamine
Fig.S17	Fluorescence spectra of binding constant of Cu ²⁺ ion with 2MPA
Fig.S18	Fluorescence spectra of binding constant of Cu ²⁺ ion with 2EPA
Fig.S19	Colour changes observed to a) 2MPA and b) 2EPA and metal ion (5*10 ⁻⁴ M) in methanol
Fig.S20	UV-visible of competitive binding of selected metal ions with 2MPA in methanol a) absorption spectra, b) fluorescence spectra
Fig.S21	UV-visible of competitive binding of selected metal ions with 2MPA in methanol a) absorption spectra, b) fluorescence spectra
Table Legends	
Table S1a	FT- IR Frequencies for 2MPA, 3MPA, 2EPA, 2AMT, 2AET
Table S1a	FT- IR Frequencies for 2MPA, 3MPA, 2EPA, 2AMT, 2AET
Table S2	Chemical Shift (δ) in ppm and Coupling constant <i>J</i> in Hz in ¹ HNMR for 2MPA, 3MPA, 2EPA, 2AMT, 2AET
Table S3	Chemical Shift (δ) in ppm in ¹³ CNMR for 2MPA, 3MPA, 2EPA, 2AMT, 2AET
Table S4	Atomic coordinates and equivalent isotropic displacement parameters for 2MPA
Table S5	Bond lengths and Bond angles for 2MPA
Table S6	Anisotropic displacement parameters for 2MPA
Table S7	Torsion angles for 2MPA
Table S8	Atomic coordinates and equivalent isotropic displacement parameters for 3MPA

Table S9	Bond lengths and Bond angles for 3MPA
Table S10	Anisotropic displacement parameters for 3MPA
Table S11	Torsion angles for 3MPA

Fig S1a FT-IR spectrum of DBrNQ in the region 4000 to 400 $\rm cm^{-1}$

Table S12	Atomic coordinates and equivalent isotropic displacement parameters for 2AMT
Table S13	Bond lengths and Bond angles for 2AMT
Table S14	Anisotropic displacement parameters for 2AMT
Table S15	Torsion angles for 2AMT
Table S16	Atomic coordinates and equivalent isotropic displacement parameters for 2EPA
Table S17	Bond lengths and Bond angles for 2EPA
Table S18	Anisotropic displacement parameters for 2EPA
Table S19	Torsion angles for 2EPA
Table S20	Atomic coordinates and equivalent isotropic displacement parameters for 2AET
Table S21	Bond lengths and Bond angles for 2AET
Table S22	Anisotropic displacement parameters for 2AET
Table S23	Torsion angles for 2AET

Fig.S1b FT-IR spectrums of 2MPA in the region 4000 cm⁻¹ to 400 cm⁻¹

Fig.S1c FT-IR spectrums of 3MPA in the region 4000 cm⁻¹ to 400 cm⁻¹

Fig.S1d FT-IR spectrums of 2EPA in the region 4000 cm⁻¹ to 400 cm⁻¹

Fig.S1e FT-IR spectrums of 2AMT in the region 4000 cm⁻¹ to 400 cm⁻¹

Fig.S1f FT-IR spectrums of 2AET in the region 4000 cm⁻¹ to 400 cm⁻¹

Fig.S2 FT-IR spectra in various regions of 2MPA, 3MPA, 2AMT, 2EPA and 2AET

Fig.S3a ¹HNMR spectrum of 2MPA in CDCl₃

Fig.S3b ¹³C NMR of 2MPA in CDCl₃

Fig.S3c DEPT NMR spectrum of 2MPA in CDCl₃

Carbons and Protons

Interpretation of the 2D gHSQCAD NMR spectrum of DBrNq2MPA-

Spot (5,8) show the correlation between the protons i.e. observed at 8.16 ppm and 8.06 ppm and the carbon C5 and C8 both absorbing at 127.154 ppm in ¹³CNMR.

Spot (6,7) shows a close correlation between the protons i.e. observed within 7.72 ppm (H-C6 and H-C7) in proton NMR and the carbons C6 and C7 which absorb at 134.894 and 137.109 respectively in carbon NMR.

Spots (11) show the correlation between the protons observed at 5.21 ppm (H-C11) and the carbons which absorb at 49.214 ppm in ¹³CNMR. Hence it is inferred from the 2D spectrum that

this proton is attached to the carbons C11. Similarly other spots can be correlated to their respective carbons.

Spot (13) and (15) are very closely related showing the correlation between the proton i.e. observed as a doublet at 7.30 ppm (C13-H) and a triplet at 7.27 ppm (C15-H) in proton NMR and the carbon C13 observed at 121.971 ppm and C15 appearing at 122.874 ppm in carbon NMR.

Spot (14) show the correlation between the proton i.e. observed at 7.64 ppm (C14-H) in proton NMR and the carbon observed at 132.154 ppm in carbon NMR.

Spot (16) show the correlation between the proton i.e. observed at 8.65 ppm (C16-H) in proton NMR and the carbon observed at 149.182 ppm in carbon NMR.

Fig.S3e gDQCOSY spectrum of 2MPA in CDCl₃ showing homonuclear correlation between protons

Fig.S4a ¹HNMR spectrum of 3MPA in CDCl₃

Fig.S4b ¹³CNMR spectrum of 3MPA in CDCl₃

Fig.S4c DEPT NMR spectrum of 3MPA (20-160 ppm) in CDCl₃

Fig S4d Zoomed view of DEPT NMR spectrum of 3MPA (122-150 ppm) in $CDCl_3$

Fig.S4e gHSQCAD NMR spectrum of 3MPA in $CDCl_3$ showing the correlation between the Carbon and Proton

Interpretation of the 2D gHSQCAD NMR of 3MPA

Spot (5) shows the correlation between the proton observed at 8.12 ppm (H-C5) and the carbon C5 which absorb at 127.371 ppm in ¹³CNMR. Hence it is inferred from the 2D spectrum that this proton is attached to the carbons C5.

Spot (8) shows the correlation between the proton i.e. observed at 8.01 ppm and the carbon C8 which absorb at 127.209 ppm in ¹³CNMR. Hence it is inferred from the 2D spectrum that this proton is attached to the carbon C8.

Spot (6,7) show a close correlation between the protons i.e. observed within 7.70 ppm (H-C6 and H-C7) in proton NMR and the carbons C6 and C7 which absorb at 135.119 and 135.571 respectively in ¹³CNMR.

Spot (13) shows the correlation between the proton i.e. observed as a doublet at 7.64 ppm (C13-H) in proton NMR and the carbon observed at 132.908 ppm in carbon NMR.

Spot (14) show the correlation between the proton i.e. observed at 7.33ppm (C14-H) in proton NMR and the carbon observed at 124.067 ppm in carbon NMR.

Spot (15) shows the correlation between the protons i.e. observed as a double for C15-H at 8.57 ppm which corresponds to the carbon absorbing at 149.435 ppm.

Spot (16) shows the correlation between the protons i.e. observed as a singlet for C16-H at 8.62 ppm which corresponds to the carbon absorbing at 149.162 ppm.

Fig.S4f gDQCOSY spectrum of 3MPA in CDCl₃ showing homonuclear correlation between protons

Fig S4g Magnified view of the gDQCOSY spectrum of 3MPA in CDCl₃

Fig.S5a ¹HNMR spectrum of 2AMT in CDCl₃

Fig.S5b ¹³CNMR spectrum of 2AMT in CDCl₃ in the region 120-180 ppm

Fig.S5c ¹³CNMR spectrum of 2AMT in CDCl₃ in the region 43-80 ppm

Fig.S5d ¹³CNMR spectrum of 2AMT in CDCl₃ in the region 125-135 ppm

Fig.S5e DEPT NMR spectrum of 2AMT in CDCl₃

Fig S5f gHSQCAD NMR spectrum of 2AMT in CDCl₃ showing correlation between carbons and protons

Interpretation of the 2DgHSQCAD Spectrum of 2AMT

Spot (5) shows the correlation between the proton observed at 8.14 ppm (H-C5) and the carbon C5 which absorb at 127.096 ppm in ¹³CNMR. Hence it is inferred from the 2D spectrum that this proton is attached to the carbons C5.

Spot (6) shows the correlation between the proton i.e. observed at 7.72 ppm and the carbon C6 which absorb at 134.867 ppm in ¹³CNMR.

Spot (7) shows a close correlation between the proton observed at 7.64 ppm (H-C7) in proton NMR and the carbon C7 absorbs at 132.651 in ¹³CNMR.

Spot (8) shows the correlation between the proton observed at 8.03 ppm (C8-H) in proton NMR and the carbon observed at 126.967 ppm in ¹³C NMR.

Spot (13) show the correlation between the proton i.e. observed at 7.07 ppm (C13-H) in proton NMR and the carbon observed at 126.596 ppm in carbon NMR.

Spot (14) shows the correlation between the protons observed at (C14-H) at 7.00 ppm which corresponds to the carbon absorbing at 127.203 ppm.

Spot (15) shows the correlation between the protons i.e. observed as a singlet for (C15-H) at 7.29 ppm which corresponds to the carbon absorbing at 125.913 ppm.

Fig.S5g gDQCOSY NMR spectrum of 2AMT in CDCl₃ showing homonuclear correlation between protons

Fig.S6a ¹HNMR spectrum of 2EPA (6.6-9.0 ppm) in CDCl₃

Fig.S6b ¹HNMR spectrum of 2EPA (0.0 – 4.5 ppm) in CDCl₃

Fig.S6c ¹³CNMR spectrum of 2EPA in CDCl₃

Fig.S6d DEPT NMR spectrum of 2EPA in CDCl₃

Fig.S6e gHSQCAD NMR spectrum of 2EPA in $CDCl_3$ showing the correlation between the Carbon and Proton.

Interpretation of the 2D gHSQCAD NMR of 2EPA-

Spots (5) show the correlation between the proton observed at 8.13 ppm (H-C5) and the carbons C5 which absorb at 127.131 ppm in ¹³CNMR. Hence it is inferred from the 2D spectrum that this proton is attached to the carbons C5.

(8) Show the correlation between the protons i.e. observed at 8.00 ppm and the carbon C8 which absorb at 126.971 ppm in ¹³CNMR. Hence it is inferred from the 2D spectrum that this proton is attached to the carbon C8.

Spot (6) shows correlation between the proton observed at 7.69 ppm (H-C6) in proton NMR and the carbons C6 absorbs at 134.856 in carbon NMR.

Spot (7) shows correlation between the proton observed at 7.64 ppm (H-C7) in proton NMR and the carbons C7 absorbs at 137.041 ppm in carbon NMR. Both C6 and C7 absorb closely with

C15 which appears at 7.60 ppm and corresponds to a carbon absorbing at 132.443 ppm in ${}^{13}C$ NMR.

Spot (14) and (16) show close correlation between protons appearing at 7.21 and 7.18 ppm respectively which correspond to the carbons absorbing at 123.655 and 122.092 ppm.

Spot (17) shows the correlation between the proton observed as a doublet at 8.59 ppm (C17-H) in proton NMR and the carbon observed at 149.660 ppm in carbon NMR.

Fig.S6f gDQCOSY NMR spectrum of 2EPA in $CDCl_3$ showing the homonuclear correlation between protons

Fig.S6g Magnified View of gDQCOSY NMR spectrum of 2EPA in CDCl₃

Fig S7b ¹HNMR spectrum of 2AET in CDCl₃ (6.0-8.5 ppm)

Fig.S7c ¹HNMR spectrum of 2AET in CDCl₃(1.0-3.5 ppm)

Fig.S7d Another ¹HNMR spectrum of 2AET in CDCl₃ (3.0-9.0 ppm)

Fig S7e ¹³CNMR spectrum of 2AET in CDCl₃ (20-80 ppm)

Fig.S7f¹³CNMR spectrum of 2AET in CDCl₃(123-180 ppm)

Fig.S7g DEPT NMR spectrum of 2AET in CDCl₃ (0-60 ppm)

Fig.S7h DEPT NMR spectrum of 2AET in CDCl₃ (124-136 ppm)

Fig.S7i gHSQCAD NMR spectrum of 2AET in CDCl₃ showing correlation between carbons and protons

Interpretation of the 2DgHSQCAD Spectrum of 2AET

Spot (5) shows the correlation between the proton observed at 8.15 ppm (H-C5) and the carbon C5 which absorb at 127.313 ppm in ¹³CNMR. Hence it is inferred from the 2D spectrum that this proton is attached to the carbons C5.

Spot (6) shows the correlation between the proton i.e. observed at 7.72 ppm and the carbon C6 which absorb at 135.053 ppm in ¹³CNMR.

Spot (7) shows a close correlation between the proton observed at 7.63 ppm (H-C7) in proton NMR and the carbon C7 absorbs at 132.670 in 13 CNMR.

Spot (8) shows the correlation between the proton observed at 8.02 ppm (C8-H) in proton NMR and the carbon observed at 127.123 ppm in 13 C NMR.

Spot (14) shows the correlation between the proton i.e. observed at 6.92 ppm (C14-H) in proton NMR and the carbon observed at 126.190 ppm in carbon NMR.

Spot (15) shows the correlation between the protons observed at (C15-H) at 6.97 ppm which corresponds to the carbon absorbing at 127.412 ppm.

Spot (16) shows the correlation between the protons i.e. observed as a singlet for (C16-H) at 7.20 ppm which corresponds to the carbon absorbing at 124.725 ppm.

Fig.S7j gDQCOSY NMR spectrum of 2AET in $CDCl_3$ showing homonuclear correlation between protons

Fig.S7k Magnified view of the gDQCOSY NMR spectrum of 2AET in CDCl₃

Fig.S8 UV-visible spectra of aminonaphthoquinones in DMSO

Fig.S9 a) Neighboring molecules of 2MPA, b) The planes of naphthoquinone ring and the pyridyl ring of 2MPA

a)

b)

c)

Fig.S10 3a) Neigboring molecules of 3MPA, b) Planes of naphthoquinone ring with pyridyl ring,c) Torsion angle of 3MPA

Fig.S11 a) Neighboring molecules of 2AMT, b) The planes of naphthoquinone ring and the pyridyl ring of 2AMT

Fig.S12 The planes of naphthoquinone ring and the pyridyl ring of 2EPA

Fig.S13 a) Neighbouring contacts of 2AET molecules, b) The planes of naphthoquinone ring and the pyridyl ring of 2AET

Fig.S14 UV-Visible spectra of a)2EPA (10^{-4} M) with metal ions (10^{-4} M) in methanol, b) In methanol and triethylamine, c) 2EPA in methanol and with metal ions (10^{-4} M) in water, d) 2EPA in methanol and with metal ions (10^{-4} M) in water and triethylamine

Fig.S15 Job plots obtained for 2MPA with Cu^{2+} ions in methanol, methanol-water, and methanol-water-triethylamine

Fig.S16 Job plots obtained for 2EPA with Cu²⁺ ions in methanol and methanol-triethylamine

Fig.S17 Fluorescence spectra of binding constant of Cu²⁺ ion with 2MPA

Fig.S18 Fluorescence spectra of binding constant of Cu²⁺ ion with 2EPA

b)

Fig.S19 Colour changes observed to a) 2MPA and b) 2EPA and metal ion (5*10-4M) in methanol

53

Fig.S20 UV-visible of competitive binding of selected metal ions with 2MPA in methanol a) Absorption spectra, b) fluorescence spectra

Fig.S21 UV-visible of competitive binding of selected metal ions with 2MPA in methanol a) absorption spectra, b) fluorescence spectra

Ligand	$\nu_{\text{N-H}}$	v _{C=O}	ν_{C-N}	v_{p-Nq}	ν_{C-Br}	ν_{C-HAr}	Ring stretching ($v_{C=C}, v_{C=N}$,
							V _{C=S)}
2MPA	3242	1680	1600	1292, 1249	638	3061,3012	1564,1492, 1435
3MPA	3267	1683	1593	1300, 1246	643	3076, 3022	1564, 1512, 1473
2EPA	3321	1672	1610	1296, 1257	653	3061,3003	1572, 1525, 1446
2AMT	3284	1685	1595	1300, 1244	623	3082, 3012	1570, 1510, 1431
2AET	3263	1678	1577	1300, 1259	686	3068,2960	1577, 1539, 1442

Table S1a FT- IR Frequencies for 2MPA, 3MPA, 2EPA, 2AMT, 2AET

 Table S1b
 FT- IR Frequencies for 2MPA, 3MPA, 2EPA, 2AMT, 2AET

Ligand	ν_{N-H}	V _{C-HAr}	v _{C=O}	ν_{C-N}	$(v_{C=C,i})$	v_{p-Nq}	v_{C-Br}
DBrNQ			1676				627
2MPA	3242	3061,3012	1680	1600	1599	1249	638
					1564		
3MPA	3267	3076, 3022	1683	1593	1564	1246	643
2AMT	3284	3082, 3012	1685	1595	1570	1244	623
2EPA	3321	3061,3003	1672	1610	1572	1257	653
2AET	3263	3068,2960	1678	1577	1577	1259	686

H bearing	2MPA	3MPA	2AMT	2EPA	2AET
Carbon	$\delta(ppm)$ and				
No.	J(Hz)	<i>J</i> (Hz)	J(Hz)	J(Hz)	J(Hz)
H-C5	8.16(d),7.50	8.12(d),7.50	8.14(d), 7.50	8.13 (d), 7.00	8.15(d), 7.50
H-C6	7.72(m)	7.70(m),	7.72(t) 7.74	7.69(t),7.25	7.72(t),7.50
H-C7	7.72(m)	7.70(m),	7.64(t), 7.50	7.64(t), 7.75	7.63(t), 7.25
H-C8	8.06(d),7.50	8.01(d), 8.00	8.03(d), 7.00	8.00(d), 7.00	8.02(d), 7.50
H-C11	5.21(d), 5.00	5.11(d),6.50	5.25(s)	4.32(q), 6.33	4.18(q), 6.66
H-C12	-	-	-	3.17(t), 3.75	3.23(t), 6.25
H-C13	7.30(d), 8.00	7.64(t),8.00	7.07(d), 3.00	-	-
H-C14	7.64 (t), 7.50	7.33(t), 6.50	7.00(t), 4.25	7.21(d),8.49	6.92(d), 4.99
H-C15	7.27(t), 6.25	8.57(d), 4.50	7.29 (d), 5.00	7.60(t), 7.50	6.97(t), 4.25
H-C16	8.65(d), 4.50	8.62 (s)	-	7.18(d), 3.75	7.20(d), 4.99
H-C17	-	_	-	8.59(d), 5.00	_
N_H	7 01	6.28	6.10	7 12	618
11-11	1.71	0.20	0.10	1.12	0.10

Table S2 Chemical Shift (δ) in ppm and Coupling constant *J* in Hz for 2MPA, 3MPA, 2EPA, 2AMT, 2AET

Carbon No.	2MPA	3MPA	2AMT	2EPA	2AET
	δ(ppm)	δ(ppm)	δ(ppm)	δ(ppm)	δ(ppm)
C1	176.680	176.753	176.200	176.200	176.600
C2	128.240	126.943	126.740	-	overlapped
C3	146.200	146.362	146.000	146.500	146.500
C4	180.537	180.084	180.000	180.454	180.226
C5	127.020	127.371	127.096	127.131	127.313
C6	134.894	135.119	134.867	134.856	135.053
C7	137.109	135.571	132.651	137.041	132.670
C8	127.154	127.209	126.967	126.971	127.123
C9	132.541	132.278	132.158	132.579	132.511
C10	130.000	129.986	129.859	130.200	130.014
C11	49,214	48.727	44.057	44.699	46.505
C12	155.215	133.985	140.100	38.052	31.450
C13	121.971	132.908	126.596	158.653	140.031
C14	132.154	124.067	127.203	123.655	126.190
C15	122.874	149.435	125.913	132.443	127.412
C16	149.182	149.162	-	122.092	124.725
C17	-	-	-	149.600	-

Table S3 Chemical Shift (δ) in ppm in ¹³C-NMR for 2MPA, 3MPA, 2EPA, 2AMT, 2AET

Table 10 ³) for	S4 Atomic coo or 2MPA. U(ec	ordinates a) is defir	$(\times 10^4)$ a ned as one	nd equiv e third of	alent isotropic displacement parameters ($Å^2 x$ the trace of the orthogonalized Uij tensor.
-		v	V	7	

	Х	У	z t	(eq)	
Br(1)	4982(1)	2050(1)	2731(1)	47(1)	
O(1)	9077(9)	604(3)	3284(2)	56(1)	
O(2)	7737(10)	522(3)	523(2)	65(1)	
N(1)	4578(10)	1739(3)	1188(2)	44(1)	
N(2)	609(13)	2913(3)	876(3)	56(1)	
C(1)	8846(11)	620(3)	2654(3)	38(1)	
C(2)	6973(10)	1213(3)	2242(2)	34(1)	
C(3)	6454(10)	1206(3)	1535(3)	33(1)	
C(4)	8113(11)	549(3)	1153(2)	38(1)	
C(5)	11829(12)	-626(4)	1208(3)	45(1)	
C(6)	13735(14)	-1174(4)	1575(4)	55(2)	
C(7)	14123(13)	-1143(4)	2287(4)	52(2)	
C(8)	12496(12)	-566(4)	2637(3)	45(1)	
C(9)	10569(10)	-9(3)	2273(3)	35(1)	
C(10)	10193(11)	-37(3)	1554(3)	38(1)	
C(11)	3771(13)	1841(4)	444(3)	44(1)	
C(12)	1638(13)	2587(4)	332(3)	45(1)	
C(13)	885(19)	2909(5)	-334(4)	69(2)	
C(14)	-1040(20)	3598(6)	-432(5)	84(3)	
C(15)	-2179(17)	3933(5)	113(5)	81(2)	
C(16)	-1283(15)	3572(5)	763(4)	65(2)	
	×)			~ /	

 Table S5 Bond lengths [Å] and angles [°] for 2MPA.

Br(1)- $C(2)$	1.888(4)
O(1)-C(1)	1.222(7)
O(2)-C(4)	1.223(7)
N(1)-C(3)	1.325(7)
N(1)-C(11)	1466(7)
N(1)-H(1)	0.8600
N(2) - C(12)	1.317(8)
N(2) - C(12) N(2) - C(16)	1.317(0) 1.322(0)
N(2) - C(10)	1.333(9) 1.424(7)
C(1)-C(2)	1.434(7)
C(1)-C(9)	1.500(7)
C(2)-C(3)	1.3/3(7)
C(3)-C(4)	1.507(6)
C(4)-C(10)	1.478(7)
C(5)-C(6)	1.364(9)
C(5)-C(10)	1.401(7)
C(5)-H(5)	0.9300
C(6)-C(7)	1.380(10)
C(6)-H(6)	0.9300
C(7)-C(8)	1.392(8)
C(7)-H(7)	0.9300
C(8)-C(9)	1 376(7)
C(8) - H(8)	0.9300
C(0) - C(10)	1.395(7)
C(11) C(12)	1.575(7) 1.503(8)
C(11) - C(12) C(11) - U(11A)	1.303(8)
$C(11) - \Pi(11A)$	0.9700
C(11)-H(11B)	0.9700
C(12)-C(13)	1.390(10)
C(13)-C(14)	1.3/3(10)
C(13)-H(13)	0.9300
C(14)-C(15)	1.350(12)
C(14)-H(14)	0.9300
C(15)-C(16)	1.395(12)
C(15)-H(15)	0.9300
C(16)-H(16)	0.9300
C(3)-N(1)-C(11)	130.9(4)
C(3)-N(1)-H(1)	114.6
C(11)-N(1)-H(1)	114.6
C(12)-N(2)-C(16)	116.8(6)
O(1)-C(1)-C(2)	123 5(5)
O(1)-C(1)-C(9)	119 9(5)
C(2)-C(1)-C(9)	116 6(4)
C(2) = C(1) = C(1)	126.1(4)
C(3) - C(2) - C(1) C(3) - C(2) - Rr(1)	120.1(-7) 1170(A)
C(3) - C(2) - DI(1) $C(1) - C(2) - D_{\pi}(1)$	11/.7(4) 11/.0(2)
U(1) - U(2) - DI(1) U(1) - C(2) - C(2)	110.0(3)
N(1)-C(3)-C(2)	122.9(4)
N(1)-C(3)-C(4)	120.0(5)
C(2)-C(3)-C(4)	117.1(5)
O(2)-C(4)-C(10)	121.7(4)

O(2)-C(4)-C(3)	119.5(5)
C(10)-C(4)-C(3)	118.8(4)
C(6)-C(5)-C(10)	119.9(6)
C(6)-C(5)-H(5)	120.1
C(10)-C(5)-H(5)	120.1
C(5)-C(6)-C(7)	120.9(5)
C(5)-C(6)-H(6)	119.5
C(7)-C(6)-H(6)	119.5
C(6)-C(7)-C(8)	119.7(6)
C(6)-C(7)-H(7)	120.1
C(8)-C(7)-H(7)	120.1
C(9)-C(8)-C(7)	119.9(6)
C(9)-C(8)-H(8)	120.0
C(7)-C(8)-H(8)	120.0
C(8)-C(9)-C(10)	120.2(5)
C(8)-C(9)-C(1)	119.6(5)
C(10)-C(9)-C(1)	120.2(5)
C(9)-C(10)-C(5)	119.3(5)
C(9)-C(10)-C(4)	121.0(4)
C(5)-C(10)-C(4)	119.7(5)
N(1)-C(11)-C(12)	108.5(4)
N(1)-C(11)-H(11A)	110.0
C(12)-C(11)-H(11A)	110.0
N(1)-C(11)-H(11B)	110.0
C(12)-C(11)-H(11B)	110.0
H(11A)-C(11)-H(11B)	108.4
N(2)-C(12)-C(13)	123.3(6)
N(2)-C(12)-C(11)	118.0(5)
C(13)-C(12)-C(11)	118.7(6)
C(14)-C(13)-C(12)	118.5(7)
C(14)-C(13)-H(13)	120.8
C(12)-C(13)-H(13)	120.8
C(15)-C(14)-C(13)	119.7(8)
C(15)-C(14)-H(14)	120.2
C(13)-C(14)-H(14)	120.2
C(14)-C(15)-C(16)	117.8(7)
C(14)-C(15)-H(15)	121.1
U(16)-U(15)-H(15)	121.1
N(2)-C(16)-C(15)	123.9(7)
N(2)-C(16)-H(16)	118.1
C(15)-C(16)-H(16)	118.1

Symmetry transformations used to generate equivalent atoms:

Table S6 Anisotropic displacement parameters ($Å^2 \times 10^3$) for 2MPA. The anisotropic displacement factor exponent takes the form:- $2\pi^2$ [h^2 a^{*2} U11 + ... + 2 h k a^{*} b^{*} U12]

I	U11	U22	U33	U23	U13	U12
$\overline{\mathrm{Br}(1)}$	54(1)	44(1)	45(1)	-11(1)	11(1)	4(1)
O(1)	61(3)	75(3)	31(2)	2(2)	3(2)	11(2)
O(2)	78(3)	86(3)	32(2)	-2(2)	6(2)	33(3)
N(1)	51(3)	48(2)	34(2)	1(2)	9(2)	10(2)
N(2)	57(4)	52(3)	57(3)	-6(2)	1(3)	8(2)
C(1)	38(3)	42(3)	34(3)	3(2)	6(2)	-7(2)
C(2)	29(3)	37(2)	36(2)	-1(2)	7(2)	1(2)
C(3)	32(3)	30(2)	38(2)	2(2)	6(2)	-1(2)
C(4)	44(3)	41(2)	31(2)	-2(2)	6(2)	2(2)
C(5)	48(3)	37(3)	52(3)	-1(2)	11(3)	2(2)
C(6)	53(4)	37(3)	77(4)	-4(3)	22(3)	3(3)
C(7)	38(3)	42(3)	75(4)	7(3)	3(3)	8(2)
C(8)	45(3)	40(3)	48(3)	9(2)	-1(2)	-3(2)
C(9)	33(3)	30(2)	43(3)	5(2)	2(2)	-9(2)
C(10)	42(3)	34(2)	41(3)	-2(2)	12(2)	-6(2)
C(11)	50(4)	47(3)	34(3)	2(2)	3(2)	7(3)
C(12)	43(3)	41(3)	50(3)	1(2)	-8(2)	-5(2)
C(13)	77(6)	74(5)	51(4)	6(3)	-10(4)	20(4)
C(14)	110(7)	71(5)	67(5)	14(4)	-8(5)	29(5)
C(15)	71(5)	53(4)	110(7)	1(4)	-18(4)	26(4)
C(16)	58(4)	60(4)	74(5)	-15(3)	-5(3)	11(3)

Table S7 Torsion angles [°] for 2MPA

O(1)-C(1)-C(2)-C(3)	-174.0(5)
C(9)-C(1)-C(2)-C(3)	5.7(7)
O(1)-C(1)-C(2)-Br(1)	3 9(7)
C(9)-C(1)-C(2)-Br(1)	-1763(3)
C(1) - C(1) - C(2) - DI(1)	-170.3(3) 170.7(6)
C(11) - N(1) - C(3) - C(2)	1/0.7(0)
C(11)-N(1)-C(3)-C(4)	-1.8(9)
C(1)-C(2)-C(3)-N(1)	176.0(5)
Br(1)-C(2)-C(3)-N(1)	-1.9(6)
C(1)-C(2)-C(3)-C(4)	-3.5(7)
Br(1)-C(2)-C(3)-C(4)	178.6(3)
N(1)-C(3)-C(4)-O(2)	1.0(8)
C(2)-C(3)-C(4)-O(2)	-179.5(5)
N(1)-C(3)-C(4)-C(10)	179.9(4)
C(2)-C(3)-C(4)-C(10)	-0.5(7)
C(10)-C(5)-C(6)-C(7)	-14(9)
C(5) - C(6) - C(7) - C(8)	1.1(9) 1.9(9)
C(6) C(7) C(8) C(9)	2.0(8)
C(0)-C(1)-C(0)-C(0)	-2.0(3)
C(7) - C(8) - C(9) - C(10)	1.0(7) 170.2(5)
C(7)- $C(8)$ - $C(9)$ - $C(1)$	-1/9.3(3)
O(1)-C(1)-C(9)-C(8)	-3.2(7)
C(2)-C(1)-C(9)-C(8)	177.1(4)
O(1)-C(1)-C(9)-C(10)	175.9(5)
C(2)-C(1)-C(9)-C(10)	-3.8(7)
C(8)-C(9)-C(10)-C(5)	-1.1(7)
C(1)-C(9)-C(10)-C(5)	179.8(4)
C(8)-C(9)-C(10)-C(4)	179.3(4)
C(1)-C(9)-C(10)-C(4)	0.2(7)
C(6)-C(5)-C(10)-C(9)	1.0(8)
C(6)-C(5)-C(10)-C(4)	-179.4(5)
O(2)-C(4)-C(10)-C(9)	-179.0(5)
C(3)-C(4)-C(10)-C(9)	2.0(7)
O(2)-C(4)-C(10)-C(5)	14(8)
C(3)-C(4)-C(10)-C(5)	-177 6(5)
C(3) = C(1) + C(10) + C(12)	1767(5)
C(16) N(2) C(12) C(12)	-1/0./(3)
C(16) - N(2) - C(12) - C(13)	1.5(10)
C(16)-N(2)-C(12)-C(11)	-1/9.9(6)
N(1)-C(11)-C(12)-N(2)	-9.1(8)
N(1)-C(11)-C(12)-C(13)	169.8(6)
N(2)-C(12)-C(13)-C(14)	-0.3(12)
C(11)-C(12)-C(13)-C(14)	-179.2(7)
C(12)-C(13)-C(14)-C(15)	-1.2(14)
C(13)-C(14)-C(15)-C(16)	1.6(14)
C(12)-N(2)-C(16)-C(15)	-0.8(11)
C(14)-C(15)-C(16)-N(2)	-0.6(13)
	· /

Symmetry transformations used to generate equivalent atoms:

	X	у	Z	U(eq)
Br(1)	3011(1)	-380(1)	8468(1)	54(1)
O(2)	-133(2)	3801(3)	8604(2)	58(1)
O(3)	1327(2)	-2666(3)	8692(2)	51(1)
N(1)	1860(2)	3506(3)	8644(2)	35(1)
N(2)	4040(3)	5744(6)	11371(3)	71(1)
C(1)	999(3)	-1176(4)	8684(2)	33(1)
C(2)	1668(2)	306(4)	8615(2)	32(1)
C(3)	1345(2)	1993(4)	8642(2)	28(1)
C(4)	189(2)	2311(4)	8645(2)	32(1)
C(5)	-1555(3)	1144(4)	8717(2)	41(1)
C(6)	-2209(3)	-236(5)	8796(3)	47(1)
C(7)	-1814(3)	-1919(5)	8836(2)	44(1)
C(8)	-771(3)	-2223(4)	8812(2)	39(1)
C(9)	-111(2)	-835(4)	8738(2)	30(1)
C(10)	-514(2)	841(4)	8693(2)	30(1)
C(11)	3009(2)	3913(4)	8831(2)	38(1)
C(12)	3616(2)	4126(4)	9896(2)	35(1)
C(13)	4293(3)	2834(5)	10442(3)	50(1)
C(14)	4810(3)	2946(5)	11387(2)	48(1)
C(15)	4677(3)	4375(6)	11823(3)	58(1)
C(16)	3498(3)	5608(5)	10381(3)	47(1)

Table S8 Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2$ x 10³) for 3MPA. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Br(1)-C(2)	1.893(3)	N(1)-C(3)-C(4)	110.4(2)
O(2)-C(4)	1.216(4)	C(2)-C(3)-C(4)	117.6(3)
O(3)-C(1)	1.222(4)	O(2)-C(4)-C(10)	121.6(3)
N(1)-C(3)	1.341(4)	O(2)-C(4)-C(3)	118.3(3)
N(1)-C(11)	1.454(4)	C(10)-C(4)-C(3)	120.1(2)
N(1)-H(1)	0.86	C(10)-C(5)-C(6)	120.0(3)
N(2)-C(15)	1.368(6)	C(10)-C(5)-H(5)	120
N(2)-C(16)	1.389(5)	C(6)-C(5)-H(5)	120
C(1)-C(2)	1.456(4)	C(5)-C(6)-C(7)	119.6(3)
C(1)-C(9)	1.486(4)	C(5)-C(6)-H(6)	120.2
C(2)-C(3)	1.370(4)	C(7)-C(6)-H(6)	120.2
C(3)-C(4)	1.517(4)	C(8)-C(7)-C(6)	120.4(3)
C(4)-C(10)	1.468(4)	C(8)-C(7)-H(7)	119.8
C(5)-C(10)	1.379(4)	C(6)-C(7)-H(7)	119.8
C(5)-C(6)	1.386(5)	C(7)-C(8)-C(9)	120.0(3)
C(5)-H(5)	0.93	C(7)-C(8)-H(8)	120
C(6)-C(7)	1.388(5)	C(9)-C(8)-H(8)	120
C(6)-H(6)	0.93	C(10)-C(9)-C(8)	119.2(3)
C(7)-C(8)	1.380(5)	C(10)-C(9)-C(1)	121.1(3)
C(7)-H(7)	0.93	C(8)-C(9)-C(1)	119.6(3)
C(8)-C(9)	1.394(4)	C(5)-C(10)-C(9)	120.8(3)
C(8)-H(8)	0.93	C(5)-C(10)-C(4)	119.7(3)
C(9)-C(10)	1.385(4)	C(9)-C(10)-C(4)	119.5(3)
C(11)-C(12)	1.504(4)	N(1)-C(11)-C(12)	111.8(3)
C(11)-H(11A)	0.97	N(1)-C(11)-H(11A)	109.3
C(11)-H(11B)	0.97	С(12)-С(11)-Н(11А)	109.3
C(12)-C(16)	1.378(5)	N(1)-C(11)-H(11B)	109.3
C(12)-C(13)	1.391(5)	C(12)-C(11)-H(11B)	109.3
C(13)-C(14)	1.325(5)	H(11A)-C(11)-H(11B)	107.9
C(13)-H(13)	0.93	C(16)-C(12)-C(13)	116.9(3)
C(14)-C(15)	1.311(6)	C(16)-C(12)-C(11)	120.9(3)
C(14)-H(14)	0.93	C(13)-C(12)-C(11)	122.2(3)
C(15)-H(15)	0.93	C(14)-C(13)-C(12)	124.0(4)
C(16)-H(16)	0.93	C(14)-C(13)-H(13)	118
C(3)-N(1)-C(11)	131.6(3)	С(12)-С(13)-Н(13)	118
C(3)-N(1)-H(1)	114.2	C(15)-C(14)-C(13)	117.4(3)
C(11)-N(1)-H(1)	114.2	C(15)-C(14)-H(14)	121.3
C(15)-N(2)-C(16)	117.6(4)	C(13)-C(14)-H(14)	121.3

 Table S9 Bond lengths [Å] and angles [°] for 3MPA

O(3)-C(1)-C(2)	121.7(3)	C(14)-C(15)-N(2)	124.5(4)
O(3)-C(1)-C(9)	120.2(3)	С(14)-С(15)-Н(15)	117.7
C(2)-C(1)-C(9)	118.1(2)	N(2)-C(15)-H(15)	117.7
C(3)-C(2)-C(1)	123.3(3)	C(12)-C(16)-N(2)	119.7(3)
C(3)-C(2)-Br(1)	124.6(2)	С(12)-С(16)-Н(16)	120.1
C(1)-C(2)-Br(1)	112.1(2)	N(2)-C(16)-H(16)	120.1
N(1)-C(3)-C(2)	132.0(3)		

Table S10 Anisotropic displacement parameters (Å² x 10³) for 3MPA. The anisotropic displacement factor exponent takes the form: -2 π^2 [h² a^{*2} U11 + ... + 2 h k a^{*} b^{*} U12]

	U11	U22	U33	U23	U13	U12
Br(1)	46(1)	45(1)	78(1)	-12(1)	32(1)	3(1)
O(2)	45(1)	22(1)	101(2)	-1(1)	17(1)	5(1)
O(3)	55(2)	22(1)	80(2)	0(1)	26(1)	8(1)
N(1)	36(1)	24(1)	41(1)	2(1)	5(1)	-4(1)
N(2)	67(2)	74(3)	68(2)	-11(2)	15(2)	-8(2)
C(1)	42(2)	22(1)	33(1)	0(1)	11(1)	2(1)
C(2)	35(1)	28(1)	34(1)	-1(1)	11(1)	3(1)
C(3)	32(1)	27(1)	22(1)	0(1)	4(1)	0(1)
C(4)	34(1)	21(1)	37(2)	-1(1)	6(1)	2(1)
C(5)	36(2)	35(2)	48(2)	0(1)	9(1)	3(1)
C(6)	36(2)	53(2)	53(2)	2(2)	16(2)	-4(2)
C(7)	48(2)	42(2)	45(2)	0(1)	18(2)	-15(2)
C(8)	52(2)	25(1)	42(2)	0(1)	17(1)	-3(1)
C(9)	38(2)	23(1)	28(1)	-1(1)	9(1)	-1(1)
C(10)	34(1)	24(1)	28(1)	-1(1)	5(1)	0(1)
C(11)	38(2)	38(2)	40(2)	2(1)	13(1)	-8(1)
C(12)	26(1)	36(2)	41(2)	2(1)	11(1)	-7(1)
C(13)	45(2)	48(2)	55(2)	2(2)	15(2)	7(2)
C(14)	38(2)	60(2)	38(2)	10(2)	1(1)	17(2)
C(15)	40(2)	86(3)	39(2)	6(2)	0(2)	2(2)
C(16)	48(2)	39(2)	49(2)	1(1)	7(2)	1(2)

Table S11 Torsion angles [°] for 3MPA

O(3)-C(1)-C(2)-C(3)	-177.4(3)	C(2)-C(1)-C(9)-C(8)	-179.5(3)
C(9)-C(1)-C(2)-C(3)	3.1(4)	C(6)-C(5)-C(10)-C(9)	0.6(5)
O(3)-C(1)-C(2)-Br(1)	3.4(4)	C(6)-C(5)-C(10)-C(4)	-177.8(3)
C(9)-C(1)-C(2)-Br(1)	-176.1(2)	C(8)-C(9)-C(10)-C(5)	-0.2(4)
C(11)-N(1)-C(3)-C(2)	-15.6(5)	C(1)-C(9)-C(10)-C(5)	178.3(3)
C(11)-N(1)-C(3)-C(4)	166.2(3)	C(8)-C(9)-C(10)-C(4)	178.1(3)
C(1)-C(2)-C(3)-N(1)	175.8(3)	C(1)-C(9)-C(10)-C(4)	-3.4(4)
Br(1)-C(2)-C(3)-N(1)	-5.1(5)	O(2)-C(4)-C(10)-C(5)	-1.7(5)
C(1)-C(2)-C(3)-C(4)	-6.1(4)	C(3)-C(4)-C(10)-C(5)	178.5(3)
Br(1)-C(2)-C(3)-C(4)	173.0(2)	O(2)-C(4)-C(10)-C(9)	180.0(3)
N(1)-C(3)-C(4)-O(2)	3.3(4)	C(3)-C(4)-C(10)-C(9)	0.2(4)
C(2)-C(3)-C(4)-O(2)	-175.2(3)	C(3)-N(1)-C(11)-C(12)	-85.1(4)
N(1)-C(3)-C(4)-C(10)	-176.9(2)	N(1)-C(11)-C(12)-C(16)	-75.9(4)
C(2)-C(3)-C(4)-C(10)	4.6(4)	N(1)-C(11)-C(12)-C(13)	102.3(4)
C(10)-C(5)-C(6)-C(7)	-1.0(5)	C(16)-C(12)-C(13)-C(14)	0.8(5)
C(5)-C(6)-C(7)-C(8)	1.0(5)	C(11)-C(12)-C(13)-C(14)	-177.4(3)
C(6)-C(7)-C(8)-C(9)	-0.6(5)	C(12)-C(13)-C(14)-C(15)	-0.8(6)
C(7)-C(8)-C(9)-C(10)	0.2(4)	C(13)-C(14)-C(15)-N(2)	0.4(7)
C(7)-C(8)-C(9)-C(1)	-178.3(3)	C(16)-N(2)-C(15)-C(14)	-0.1(7)
O(3)-C(1)-C(9)-C(10)	-177.5(3)	C(13)-C(12)-C(16)-N(2)	-0.4(5)
C(2)-C(1)-C(9)-C(10)	2.0(4)	C(11)-C(12)-C(16)-N(2)	177.8(3)
O(3)-C(1)-C(9)-C(8)	0.9(4)	C(15)-N(2)-C(16)-C(12)	0.1(6)

	Х	у	Z	U(eq)
Br(1)	7096(1)	5025(1)	8919(1)	69(1)
S(1)	11652(2)	11274(2)	8292(1)	69(1)
O(1)	7415(5)	2481(3)	7175(2)	63(1)
O(2)	7601(7)	8722(4)	5502(2)	88(1)
N(1)	7626(4)	8678(4)	7553(2)	38(1)
C(1)	7454(6)	3925(5)	6794(3)	42(1)
C(2)	7431(5)	5481(5)	7452(3)	38(1)
C(3)	7552(5)	7117(4)	7060(3)	33(1)
C(4)	7545(6)	7286(5)	5859(3)	44(1)
C(5)	7488(7)	5896(6)	4077(3)	53(1)
C(6)	7467(7)	4441(6)	3424(3)	60(1)
C(7)	7459(8)	2841(6)	3859(4)	65(1)
C(8)	7465(7)	2662(5)	4946(4)	59(1)
C(9)	7487(6)	4112(5)	5618(3)	40(1)
C(10)	7497(6)	5727(5)	5171(3)	39(1)
C(11)	8302(5)	9244(5)	8615(3)	40(1)
C(12)	10352(5)	9422(5)	8680(3)	40(1)
C(13)	11475(5)	8157(5)	9003(3)	36(1)
C(14)	13343(7)	8855(7)	8918(4)	63(1)
C(15)	13626(7)	10461(8)	8546(4)	69(1)

Table S12 Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for 2AMT. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Br(1)-C(2)	1.894(3)	N(1)-C(3)-C(2)	131.3(3)
S(1)-C(15)	1.680(6)	N(1)-C(3)-C(4)	111.1(3)
S(1)-C(12)	1.705(4)	C(2)-C(3)-C(4)	117.5(3)
O(1)-C(1)	1.225(4)	O(2)-C(4)-C(10)	122.0(3)
O(2)-C(4)	1.206(4)	O(2)-C(4)-C(3)	118.2(3)
N(1)-C(3)	1.339(4)	C(10)-C(4)-C(3)	119.8(3)
N(1)-C(11)	1.462(4)	C(6)-C(5)-C(10)	119.7(4)
N(1)-H(1)	0.86	C(6)-C(5)-H(5)	120.2
C(1)-C(2)	1.446(5)	C(10)-C(5)-H(5)	120.2
C(1)-C(9)	1.488(5)	C(7)-C(6)-C(5)	119.9(4)
C(2)-C(3)	1.364(5)	C(7)-C(6)-H(6)	120.1
C(3)-C(4)	1.517(5)	C(5)-C(6)-H(6)	120.1
C(4)-C(10)	1.464(5)	C(6)-C(7)-C(8)	120.8(4)
C(5)-C(6)	1.375(6)	C(6)-C(7)-H(7)	119.6
C(5)-C(10)	1.384(5)	C(8)-C(7)-H(7)	119.6
C(5)-H(5)	0.93	C(7)-C(8)-C(9)	120.2(4)
C(6)-C(7)	1.366(6)	C(7)-C(8)-H(8)	119.9
C(6)-H(6)	0.93	C(9)-C(8)-H(8)	119.9
C(7)-C(8)	1.376(6)	C(8)-C(9)-C(10)	118.6(4)
C(7)-H(7)	0.93	C(8)-C(9)-C(1)	120.6(3)
C(8)-C(9)	1.386(5)	C(10)-C(9)-C(1)	120.8(3)
C(8)-H(8)	0.93	C(5)-C(10)-C(9)	120.8(4)
C(9)-C(10)	1.383(5)	C(5)-C(10)-C(4)	119.3(3)
C(11)-C(12)	1.494(6)	C(9)-C(10)-C(4)	119.9(3)
C(11)-H(11A)	0.97	N(1)-C(11)-C(12)	112.0(3)
C(11)-H(11B)	0.97	N(1)-C(11)-H(11A)	109.2
C(12)-C(13)	1.421(5)	С(12)-С(11)-Н(11А)	109.2
C(13)-C(14)	1.415(6)	N(1)-C(11)-H(11B)	109.2
C(13)-H(13)	0.93	C(12)-C(11)-H(11B)	109.2
C(14)-C(15)	1.332(7)	H(11A)-C(11)-H(11B)	107.9
C(14)-H(14)	0.93	C(13)-C(12)-C(11)	127.8(3)
С(15)-Н(15)	0.93	C(13)-C(12)-S(1)	111.2(3)
C(15)-S(1)-C(12)	92.5(2)	C(11)-C(12)-S(1)	121.0(3)
C(3)-N(1)-C(11)	130.0(3)	C(14)-C(13)-C(12)	109.0(4)
C(3)-N(1)-H(1)	115	С(14)-С(13)-Н(13)	125.5
C(11)-N(1)-H(1)	115	С(12)-С(13)-Н(13)	125.5
O(1)-C(1)-C(2)	122.1(4)	C(15)-C(14)-C(13)	115.0(5)
O(1)-C(1)-C(9)	119.9(4)	C(15)-C(14)-H(14)	122.5

 Table S13 Bond lengths [Å] and angles [°] for 2AMT.

C(2)-C(1)-C(9)	118.0(3)	C(13)-C(14)-H(14)	122.5
C(3)-C(2)-C(1)	123.8(3)	C(14)-C(15)-S(1)	112.4(4)
C(3)-C(2)-Br(1)	122.7(3)	C(14)-C(15)-H(15)	123.8
C(1)-C(2)-Br(1)	113.4(2)	S(1)-C(15)-H(15)	123.8

Symmetry transformations used to generate equivalent atoms:

	U11	U22	U33	U23	U13	U12
Br(1)	117(1)	50(1)	37(1)	13(1)	4(1)	-5(1)
S(1)	73(1)	62(1)	70(1)	14(1)	6(1)	-6(1)
O(1)	106(3)	31(2)	53(2)	12(1)	0(2)	9(2)
O(2)	197(4)	29(2)	40(2)	5(1)	-5(2)	21(2)
N(1)	53(2)	30(2)	33(2)	-2(1)	-8(1)	10(1)
C(1)	51(3)	31(2)	44(2)	7(2)	-2(2)	3(2)
C(2)	52(2)	34(2)	27(2)	7(1)	-2(2)	2(2)
C(3)	37(2)	31(2)	32(2)	0(1)	-3(2)	6(2)
C(4)	67(3)	30(2)	35(2)	3(2)	-5(2)	9(2)
C(5)	80(3)	43(2)	36(2)	1(2)	1(2)	10(2)
C(6)	84(4)	60(3)	36(2)	-7(2)	1(2)	10(3)
C(7)	100(4)	47(3)	49(3)	-16(2)	-1(3)	15(3)
C(8)	92(4)	31(2)	55(3)	-2(2)	-5(2)	12(2)
C(9)	51(2)	29(2)	40(2)	1(2)	-3(2)	7(2)
C(10)	49(2)	32(2)	35(2)	2(2)	-1(2)	7(2)
C(11)	48(2)	39(2)	33(2)	-7(2)	0(2)	5(2)
C(12)	46(2)	44(2)	27(2)	-5(2)	3(2)	-2(2)
C(13)	27(2)	53(2)	29(2)	-4(2)	-5(2)	12(2)
C(14)	52(3)	84(4)	55(3)	-5(3)	1(2)	19(3)
C(15)	47(3)	98(4)	57(3)	-3(3)	2(2)	-11(3)

Table S14 Anisotropic displacement parameters (Å² x 10³) for 2AMT. The anisotropic displacement factor exponent takes the form; $-2 \pi^2$ [h² a^{*2} U11 + ... + 2 h k a^{*} b^{*} U12]

Table S15 Torsion angles [°] for 2AMT

O(1)-C(1)-C(2)-C(3)	177.1(4)	C(2)-C(1)-C(9)-C(10)	0.1(6)
C(9)-C(1)-C(2)-C(3)	-4.2(6)	C(6)-C(5)-C(10)-C(9)	0.0(7)
O(1)-C(1)-C(2)-Br(1)	-5.8(5)	C(6)-C(5)-C(10)-C(4)	179.2(4)
C(9)-C(1)-C(2)-Br(1)	172.9(3)	C(8)-C(9)-C(10)-C(5)	0.0(7)
C(11)-N(1)-C(3)-C(2)	26.9(7)	C(1)-C(9)-C(10)-C(5)	-178.6(4)
C(11)-N(1)-C(3)-C(4)	-155.3(4)	C(8)-C(9)-C(10)-C(4)	-179.2(4)
C(1)-C(2)-C(3)-N(1)	-176.9(4)	C(1)-C(9)-C(10)-C(4)	2.3(6)
Br(1)-C(2)-C(3)-N(1)	6.2(6)	O(2)-C(4)-C(10)-C(5)	-1.0(7)
C(1)-C(2)-C(3)-C(4)	5.4(6)	C(3)-C(4)-C(10)-C(5)	179.9(4)
Br(1)-C(2)-C(3)-C(4)	-171.5(3)	O(2)-C(4)-C(10)-C(9)	178.2(5)
N(1)-C(3)-C(4)-O(2)	-0.1(6)	C(3)-C(4)-C(10)-C(9)	-1.0(6)
C(2)-C(3)-C(4)-O(2)	178.0(4)	C(3)-N(1)-C(11)-C(12)	73.2(5)
N(1)-C(3)-C(4)-C(10)	179.1(4)	N(1)-C(11)-C(12)-C(13)	-93.3(4)
C(2)-C(3)-C(4)-C(10)	-2.8(6)	N(1)-C(11)-C(12)-S(1)	83.9(4)
C(10)-C(5)-C(6)-C(7)	-0.1(8)	C(15)-S(1)-C(12)-C(13)	-0.3(3)
C(5)-C(6)-C(7)-C(8)	0.2(8)	C(15)-S(1)-C(12)-C(11)	-178.0(3)
C(6)-C(7)-C(8)-C(9)	-0.2(8)	C(11)-C(12)-C(13)-C(14)	178.4(4)
C(7)-C(8)-C(9)-C(10)	0.1(7)	S(1)-C(12)-C(13)-C(14)	1.0(4)
C(7)-C(8)-C(9)-C(1)	178.7(5)	C(12)-C(13)-C(14)-C(15)	-1.3(5)
O(1)-C(1)-C(9)-C(8)	0.3(7)	C(13)-C(14)-C(15)-S(1)	1.1(6)
C(2)-C(1)-C(9)-C(8)	-178.4(4)	C(12)-S(1)-C(15)-C(14)	-0.5(4)
O(1)-C(1)-C(9)-C(10)	178.8(4)		

Symmetry transformations used to generate equivalent atoms:
	X	у	Z	U(eq)
Br(1)	2137(1)	403(1)	542(1)	67(1)
O(1)	2431(1)	3113(8)	1556(1)	67(1)
O(2)	309(1)	5772(8)	584(1)	65(1)
N(1)	777(1)	2115(8)	122(1)	49(1)
N(2)	507(1)	-1328(8)	-1376(1)	50(1)
C(1)	1941(2)	3692(9)	1333(2)	43(1)
C(2)	1660(2)	2585(9)	822(1)	39(1)
C(3)	1110(2)	3076(8)	571(1)	35(1)
C(4)	793(2)	5123(9)	819(1)	39(1)
C(5)	769(2)	8163(9)	1559(1)	42(1)
C(6)	1025(2)	9241(10)	2041(2)	50(1)
C(7)	1574(2)	8500(10)	2293(2)	51(1)
C(8)	1868(2)	6720(10)	2063(2)	47(1)
C(9)	1618(1)	5615(9)	1579(1)	35(1)
C(10)	1062(1)	6331(8)	1329(1)	34(1)
C(11)	865(2)	81(9)	-252(1)	45(1)
C(12)	1023(2)	1693(9)	-672(2)	49(1)
C(13)	1015(2)	-366(9)	-1098(1)	42(1)
C(14)	1492(2)	-1311(10)	-1194(2)	52(1)
C(15)	1450(2)	-3281(11)	-1586(2)	63(1)
C(16)	936(2)	-4243(11)	-1871(2)	63(1)
C(17)	479(2)	-3224(11)	-1752(2)	59(1)

Table S16 Atomic coordinates (\times 10⁴) and equivalent isotropic displacement parameters (Å² \times 10³) for 2EPA. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Br(1)-C(2)	1.896(4)	C(2)-C(3)-C(4)	117.6(3)
O(1)-C(1)	1.226(4)	O(2)-C(4)-C(10)	120.8(3)
O(2)-C(4)	1.227(4)	O(2)-C(4)-C(3)	118.7(3)
N(1)-C(3)	1.338(5)	C(10)-C(4)-C(3)	120.5(3)
N(1)-C(11)	1.448(5)	C(6)-C(5)-C(10)	119.7(4)
N(1)-H(1)	0.86	C(6)-C(5)-H(5)	120.1
N(2)-C(17)	1.328(5)	C(10)-C(5)-H(5)	120.1
N(2)-C(13)	1.345(5)	C(5)-C(6)-C(7)	119.9(4)
C(1)-C(2)	1.460(5)	C(5)-C(6)-H(6)	120
C(1)-C(9)	1.488(5)	C(7)-C(6)-H(6)	120
C(2)-C(3)	1.363(5)	C(8)-C(7)-C(6)	120.4(4)
C(3)-C(4)	1.514(5)	C(8)-C(7)-H(7)	119.8
C(4)-C(10)	1.468(5)	C(6)-C(7)-H(7)	119.8
C(5)-C(6)	1.379(5)	C(7)-C(8)-C(9)	120.5(4)
C(5)-C(10)	1.384(5)	C(7)-C(8)-H(8)	119.8
C(5)-H(5)	0.93	C(9)-C(8)-H(8)	119.8
C(6)-C(7)	1.385(6)	C(8)-C(9)-C(10)	119.0(4)
C(6)-H(6)	0.93	C(8)-C(9)-C(1)	120.1(3)
C(7)-C(8)	1.370(6)	C(10)-C(9)-C(1)	120.9(3)
C(7)-H(7)	0.93	C(5)-C(10)-C(9)	120.4(3)
C(8)-C(9)	1.385(5)	C(5)-C(10)-C(4)	120.4(3)
C(8)-H(8)	0.93	C(9)-C(10)-C(4)	119.2(3)
C(9)-C(10)	1.395(5)	N(1)-C(11)-C(12)	112.7(3)
C(11)-C(12)	1.523(6)	N(1)-C(11)-H(11A)	109.1
C(11)-H(11A)	0.97	С(12)-С(11)-Н(11А)	109.1
C(11)-H(11B)	0.97	N(1)-C(11)-H(11B)	109.1
C(12)-C(13)	1.493(6)	С(12)-С(11)-Н(11В)	109.1
C(12)-H(12A)	0.97	H(11A)-C(11)-H(11B)	107.8
C(12)-H(12B)	0.97	C(13)-C(12)-C(11)	111.8(3)
C(13)-C(14)	1.380(5)	С(13)-С(12)-Н(12А)	109.3
C(14)-C(15)	1.376(6)	С(11)-С(12)-Н(12А)	109.3
C(14)-H(14)	0.93	С(13)-С(12)-Н(12В)	109.3
C(15)-C(16)	1.362(7)	C(11)-C(12)-H(12B)	109.3
C(15)-H(15)	0.93	H(12A)-C(12)-H(12B)	107.9
C(16)-C(17)	1.373(6)	N(2)-C(13)-C(14)	121.8(4)
C(16)-H(16)	0.93	N(2)-C(13)-C(12)	115.3(3)
С(17)-Н(17)	0.93	C(14)-C(13)-C(12)	122.9(4)
C(3)-N(1)-C(11)	132.7(3)	C(13)-C(14)-C(15)	119.3(4)

 Table S17 Bond lengths [Å] and angles [°] for 2EPA

C(3)-N(1)-H(1)	113.7	C(13)-C(14)-H(14)	120.3
C(11)-N(1)-H(1)	113.7	C(15)-C(14)-H(14)	120.3
C(17)-N(2)-C(13)	117.6(4)	C(16)-C(15)-C(14)	119.1(4)
O(1)-C(1)-C(2)	121.9(4)	С(16)-С(15)-Н(15)	120.4
O(1)-C(1)-C(9)	120.1(4)	C(14)-C(15)-H(15)	120.4
C(2)-C(1)-C(9)	118.0(3)	C(15)-C(16)-C(17)	118.5(4)
C(3)-C(2)-C(1)	123.5(3)	C(15)-C(16)-H(16)	120.8
C(3)-C(2)-Br(1)	123.4(3)	C(17)-C(16)-H(16)	120.8
C(1)-C(2)-Br(1)	113.1(3)	N(2)-C(17)-C(16)	123.8(5)
N(1)-C(3)-C(2)	131.9(4)	N(2)-C(17)-H(17)	118.1
N(1)-C(3)-C(4)	110.5(3)	С(16)-С(17)-Н(17)	118.1

Symmetry transformations used to generate equivalent atoms:

	U11	U22	U33	U23	U13	U12
Br(1)	43(1)	89(1)	66(1)	-16(1)	12(1)	22(1)
O(1)	30(2)	104(3)	56(2)	-10(2)	-4(1)	21(2)
O(2)	35(2)	107(3)	41(2)	-18(2)	-6(1)	24(2)
N(1)	34(2)	68(2)	37(2)	-10(2)	1(2)	9(2)
N(2)	46(2)	56(2)	48(2)	-3(2)	13(2)	13(2)
C(1)	31(2)	50(3)	42(2)	7(2)	3(2)	3(2)
C(2)	30(2)	45(2)	40(2)	1(2)	11(2)	6(2)
C(3)	30(2)	41(2)	32(2)	5(2)	7(2)	4(2)
C(4)	30(2)	49(3)	35(2)	4(2)	4(2)	4(2)
C(5)	34(2)	55(3)	35(2)	3(2)	7(2)	7(2)
C(6)	47(2)	63(3)	40(2)	-8(2)	16(2)	1(2)
C(7)	44(2)	68(3)	34(2)	-9(2)	3(2)	-11(2)
C(8)	30(2)	64(3)	39(2)	-1(2)	0(2)	-4(2)
C(9)	26(2)	43(2)	34(2)	4(2)	5(2)	-2(2)
C(10)	30(2)	42(2)	28(2)	5(2)	7(2)	-4(2)
C(11)	46(2)	44(2)	40(2)	-8(2)	7(2)	-1(2)
C(12)	55(3)	43(2)	47(2)	3(2)	12(2)	2(2)
C(13)	47(2)	39(2)	39(2)	7(2)	13(2)	10(2)
C(14)	45(2)	56(3)	57(3)	9(2)	18(2)	9(2)
C(15)	68(3)	68(3)	65(3)	13(3)	38(3)	27(3)
C(16)	88(4)	62(3)	38(2)	-1(2)	20(3)	21(3)
C(17)	60(3)	67(3)	44(3)	-6(2)	5(2)	10(2)

Table S18 Anisotropic displacement parameters (Å² x 10³) for 2EPA. The anisotropic displacement factor exponent takes the form: $-2 \pi^2$ [h² a^{*2} U11 + ... + 2 h k a^{*} b^{*} U12]

Table S19 Torsion angles [°] for 2EPA

O(1)-C(1)-C(2)-C(3)	177.1(4)	C(6)-C(5)-C(10)-C(9)	-1.2(6)
C(9)-C(1)-C(2)-C(3)	-3.9(6)	C(6)-C(5)-C(10)-C(4)	179.0(4)
O(1)-C(1)-C(2)-Br(1)	-3.0(5)	C(8)-C(9)-C(10)-C(5)	1.1(6)
C(9)-C(1)-C(2)-Br(1)	175.9(3)	C(1)-C(9)-C(10)-C(5)	-178.9(3)
C(11)-N(1)-C(3)-C(2)	3.9(8)	C(8)-C(9)-C(10)-C(4)	-179.0(3)
C(11)-N(1)-C(3)-C(4)	-177.6(4)	C(1)-C(9)-C(10)-C(4)	1.0(5)
C(1)-C(2)-C(3)-N(1)	-175.6(4)	O(2)-C(4)-C(10)-C(5)	1.8(6)
Br(1)-C(2)-C(3)-N(1)	4.6(6)	C(3)-C(4)-C(10)-C(5)	-178.9(3)
C(1)-C(2)-C(3)-C(4)	6.0(6)	O(2)-C(4)-C(10)-C(9)	-178.1(4)
Br(1)-C(2)-C(3)-C(4)	-173.9(3)	C(3)-C(4)-C(10)-C(9)	1.2(5)
N(1)-C(3)-C(4)-O(2)	-4.0(5)	C(3)-N(1)-C(11)-C(12)	-95.2(5)
C(2)-C(3)-C(4)-O(2)	174.7(4)	N(1)-C(11)-C(12)-C(13)	-170.1(3)
N(1)-C(3)-C(4)-C(10)	176.6(3)	C(17)-N(2)-C(13)-C(14)	-0.4(6)
C(2)-C(3)-C(4)-C(10)	-4.6(5)	C(17)-N(2)-C(13)-C(12)	-178.4(4)
C(10)-C(5)-C(6)-C(7)	0.3(6)	C(11)-C(12)-C(13)-N(2)	69.0(5)
C(5)-C(6)-C(7)-C(8)	0.6(7)	C(11)-C(12)-C(13)-C(14)	-108.9(5)
C(6)-C(7)-C(8)-C(9)	-0.6(7)	N(2)-C(13)-C(14)-C(15)	0.3(6)
C(7)-C(8)-C(9)-C(10)	-0.2(6)	C(12)-C(13)-C(14)-C(15)	178.1(4)
C(7)-C(8)-C(9)-C(1)	179.8(4)	C(13)-C(14)-C(15)-C(16)	0.2(7)
O(1)-C(1)-C(9)-C(8)	-0.9(6)	C(14)-C(15)-C(16)-C(17)	-0.6(7)
C(2)-C(1)-C(9)-C(8)	-179.9(4)	C(13)-N(2)-C(17)-C(16)	0.0(7)
O(1)-C(1)-C(9)-C(10)	179.1(4)	C(15)-C(16)-C(17)-N(2)	0.5(7)
C(2)-C(1)-C(9)-C(10)	0.1(5)		

Symmetry transformations used to generate equivalent atoms:

	X	у	Z	U(eq)
Br(1)	9944(1)	6929(4)	7441(1)	88(1)
S(2)	11258(2)	9422(15)	9330(4)	127(2)
O(1)	9155(4)	3380(30)	6306(6)	86(3)
O(2)	8269(4)	4170(20)	9630(6)	78(3)
N(1)	9232(4)	6960(20)	9406(6)	57(2)
C(1)	8968(5)	3510(30)	7098(7)	56(3)
C(2)	9248(5)	5130(30)	7815(7)	51(2)
C(3)	9033(4)	5460(20)	8681(7)	47(2)
C(4)	8469(5)	3900(30)	8880(7)	54(3)
C(5)	7668(6)	610(30)	8324(10)	72(3)
C(6)	7398(7)	-990(30)	7634(12)	83(4)
C(7)	7645(7)	-1280(40)	6783(12)	90(5)
C(8)	8142(6)	170(30)	6616(10)	74(4)
C(9)	8426(5)	1880(30)	7300(8)	57(3)
C(10)	8183(5)	2090(30)	8143(8)	53(3)
C(11)	9758(5)	8630(30)	9584(8)	55(3)
C(12)	10259(5)	6550(30)	9854(9)	63(3)
C(13)	10792(5)	8310(30)	10119(10)	64(3)
C(14)	10957(4)	9380(30)	11020(9)	57(3)
C(15)	11467(10)	10930(50)	10960(20)	132(9)
C(16)	11672(10)	11260(50)	10140(30)	154(14)

Table S20 Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for 2AET. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Br(1)-C(2)	1.899(11)	C(2)-C(3)-C(4)	117.7(10)
	S(2)-C(13)	1.678(13)	O(2)-C(4)-C(10)	122.4(11)
	S(2)-C(16)	1.71(3)	O(2)-C(4)-C(3)	118.9(11)
	O(1)-C(1)	1.248(13)	C(10)-C(4)-C(3)	118.7(9)
	O(2)-C(4)	1.207(13)	C(6)-C(5)-C(10)	119.0(14)
	N(1)-C(3)	1.326(14)	C(6)-C(5)-H(5)	120.5
	N(1)-C(11)	1.450(14)	С(10)-С(5)-Н(5)	120.5
	N(1)-H(1)	0.86	C(5)-C(6)-C(7)	120.7(15)
	C(1)-C(2)	1.417(16)	C(5)-C(6)-H(6)	119.6
	C(1)-C(9)	1.491(17)	C(7)-C(6)-H(6)	119.6
	C(2)-C(3)	1.380(14)	C(8)-C(7)-C(6)	119.5(15)
	C(3)-C(4)	1.519(15)	C(8)-C(7)-H(7)	120.2
	C(4)-C(10)	1.488(17)	С(6)-С(7)-Н(7)	120.2
	C(5)-C(6)	1.37(2)	C(7)-C(8)-C(9)	121.3(14)
	C(5)-C(10)	1.398(17)	C(7)-C(8)-H(8)	119.3
	C(5)-H(5)	0.93	C(9)-C(8)-H(8)	119.3
	C(6)-C(7)	1.39(2)	C(10)-C(9)-C(8)	118.4(12)
	C(6)-H(6)	0.93	C(10)-C(9)-C(1)	121.1(10)
	C(7)-C(8)	1.35(2)	C(8)-C(9)-C(1)	120.5(11)
	C(7)-H(7)	0.93	C(9)-C(10)-C(5)	120.9(12)
	C(8)-C(9)	1.408(17)	C(9)-C(10)-C(4)	120.0(10)
	C(8)-H(8)	0.93	C(5)-C(10)-C(4)	119.1(11)
	C(9)-C(10)	1.372(17)	N(1)-C(11)-C(12)	112.0(9)
	C(11)-C(12)	1.532(16)	N(1)-C(11)-H(11A)	109.2
	C(11)-H(11A)	0.97	С(12)-С(11)-Н(11А)	109.2
	C(11)-H(11B)	0.97	N(1)-C(11)-H(11B)	109.2
	C(12)-C(13)	1.509(18)	С(12)-С(11)-Н(11В)	109.2
	C(12)-H(12A)	0.97	H(11A)-C(11)-H(11B)	107.9
	C(12)-H(12B)	0.97	C(13)-C(12)-C(11)	112.1(10)
	C(13)-C(14)	1.444(18)	С(13)-С(12)-Н(12А)	109.2
	C(14)-C(15)	1.38(3)	С(11)-С(12)-Н(12А)	109.2
	C(14)-H(14)	0.93	С(13)-С(12)-Н(12В)	109.2
	C(15)-C(16)	1.32(4)	С(11)-С(12)-Н(12В)	109.2
	С(15)-Н(15)	0.93	H(12A)-C(12)-H(12B)	107.9
ļ	С(16)-Н(16)	0.93	C(14)-C(13)-C(12)	127.0(11)
ļ	C(13)-S(2)-C(16)	91.7(13)	C(14)-C(13)-S(2)	111.6(10)
ļ	C(3)-N(1)-C(11)	132.7(9)	C(12)-C(13)-S(2)	121.2(11)
ļ	C(3)-N(1)-H(1)	113.7	C(15)-C(14)-C(13)	108.5(16)

 Table S21 Bond lengths [Å] and angles [°] for 2AET

C(11)-N(1)-H(1)	113.7	С(15)-С(14)-Н(14)	125.7
O(1)-C(1)-C(2)	123.1(11)	C(13)-C(14)-H(14)	125.7
O(1)-C(1)-C(9)	118.5(11)	C(16)-C(15)-C(14)	116(2)
C(2)-C(1)-C(9)	118.4(9)	С(16)-С(15)-Н(15)	121.8
C(3)-C(2)-C(1)	124.0(10)	С(14)-С(15)-Н(15)	121.8
C(3)-C(2)-Br(1)	123.6(9)	C(15)-C(16)-S(2)	111.7(18)
C(1)-C(2)-Br(1)	112.3(7)	С(15)-С(16)-Н(16)	124.2
N(1)-C(3)-C(2)	131.1(10)	S(2)-C(16)-H(16)	124.2
N(1)-C(3)-C(4)	111.3(9)		

Symmetry transformations used to generate equivalent atoms:

Table S22 Anisotropic displacement parameters ($Å^2 \times 10^3$) for 2AET
The anisotropic displacement factor exponent takes the form:
-2 π^2 [h ² a ^{*2} U11 + + 2 h k a [*] b [*] U12]

-					1	1
	U11	U22	U33	U23	U13	U12
Br(1)	89(1)	118(1)	60(1)	-10(1)	28(1)	-31(1)
S(2)	96(3)	143(5)	145(5)	53(4)	26(3)	-6(3)
O(1)	95(6)	128(9)	35(4)	-11(5)	5(4)	-3(6)
O(2)	72(5)	104(7)	58(5)	-15(5)	22(4)	-29(5)
N(1)	55(5)	76(6)	39(5)	-4(5)	9(4)	-9(5)
C(1)	65(7)	69(7)	35(5)	5(5)	2(5)	4(6)
C(2)	57(6)	58(6)	36(5)	4(5)	5(4)	5(5)
C(3)	53(6)	50(6)	38(5)	3(5)	-2(4)	1(5)
C(4)	55(6)	64(7)	44(6)	5(5)	5(5)	2(5)
C(5)	71(8)	75(9)	71(8)	10(7)	-6(7)	-9(7)
C(6)	83(9)	65(9)	98(12)	-2(8)	-18(9)	-13(8)
C(7)	95(11)	81(11)	93(12)	-17(9)	-32(9)	-14(9)
C(8)	91(10)	67(9)	63(8)	-12(7)	-16(7)	5(8)
C(9)	64(7)	58(7)	50(6)	-2(5)	-10(5)	14(5)
C(10)	54(6)	53(6)	53(6)	4(5)	-6(5)	5(5)
C(11)	65(7)	58(7)	43(6)	-5(5)	3(5)	-6(5)
C(12)	61(7)	56(7)	72(8)	-2(6)	-1(6)	-2(6)
C(13)	57(6)	50(7)	83(9)	11(6)	4(6)	8(5)
C(14)	35(5)	59(7)	78(8)	-20(6)	-8(5)	6(5)
C(15)	111(17)	88(14)	190(30)	-1(16)	-63(18)	16(12)
C(16)	89(14)	103(16)	270(40)	90(20)	-79(19)	-33(12)

O(1)-C(1)-C(2)-C(3)	175.9(12)	C(2)-C(1)-C(9)-C(8)	-178.2(11)
C(9)-C(1)-C(2)-C(3)	-4.0(18)	C(8)-C(9)-C(10)-C(5)	0.6(17)
O(1)-C(1)-C(2)-Br(1)	-2.2(16)	C(1)-C(9)-C(10)-C(5)	178.7(11)
C(9)-C(1)-C(2)-Br(1)	177.9(8)	C(8)-C(9)-C(10)-C(4)	-179.5(11)
C(11)-N(1)-C(3)-C(2)	-4(2)	C(1)-C(9)-C(10)-C(4)	-1.4(16)
C(11)-N(1)-C(3)-C(4)	176.1(11)	C(6)-C(5)-C(10)-C(9)	-2(2)
C(1)-C(2)-C(3)-N(1)	-177.8(11)	C(6)-C(5)-C(10)-C(4)	178.3(12)
Br(1)-C(2)-C(3)-N(1)	0.0(19)	O(2)-C(4)-C(10)-C(9)	179.4(12)
C(1)-C(2)-C(3)-C(4)	1.7(17)	C(3)-C(4)-C(10)-C(9)	-0.8(16)
Br(1)-C(2)-C(3)-C(4)	179.6(8)	O(2)-C(4)-C(10)-C(5)	-0.7(18)
N(1)-C(3)-C(4)-O(2)	0.2(16)	C(3)-C(4)-C(10)-C(5)	179.0(11)
C(2)-C(3)-C(4)-O(2)	-179.5(11)	C(3)-N(1)-C(11)-C(12)	-81.9(15)
N(1)-C(3)-C(4)-C(10)	-179.6(10)	N(1)-C(11)-C(12)-C(13)	-175.0(10)
C(2)-C(3)-C(4)-C(10)	0.8(15)	C(11)-C(12)-C(13)-C(14)	89.7(15)
C(10)-C(5)-C(6)-C(7)	3(2)	C(11)-C(12)-C(13)-S(2)	-86.6(12)
C(5)-C(6)-C(7)-C(8)	-4(2)	C(16)-S(2)-C(13)-C(14)	0.2(12)
C(6)-C(7)-C(8)-C(9)	3(2)	C(16)-S(2)-C(13)-C(12)	177.1(12)
C(7)-C(8)-C(9)-C(10)	-1.0(19)	C(12)-C(13)-C(14)-C(15)	-178.8(14)
C(7)-C(8)-C(9)-C(1)	-179.1(13)	S(2)-C(13)-C(14)-C(15)	-2.2(14)
O(1)-C(1)-C(9)-C(10)	-176.1(11)	C(13)-C(14)-C(15)-C(16)	4(3)
C(2)-C(1)-C(9)-C(10)	3.8(17)	C(14)-C(15)-C(16)-S(2)	-4(3)
O(1)-C(1)-C(9)-C(8)	1.9(18)	C(13)-S(2)-C(16)-C(15)	2(2)

Table S23 Torsion angles [°] for 2AET.

Table 24 Selected bond distances (in Å) in 2MPA, 3MPA, 2AMT and 2AET in the gas phase (G) and solvent, Dimethylsulfoxide (D)

		2MPA		3MPA			2EPA			2AMT			2AET		
	Theoret	ical	Obs.	Theoret	ical	Obs.	Theoretic	cal	Obs.	Theoretical		Obs.	Theoretical		Obs.
	G	D		G	D		G	D		G	D		G	D	
C=O ₁	1.221	1.221	1.227(8)	1.218	1.218	1.222(4)	1.220	1.220	1.226(4)	1.218	1.218	1.225(4)	1.224	1.224	1.24(2)
C=O ₂	1.218	1.218	1.227(8)	1.218	1.218	1.216(4)	1.218	1.218	1.227(4)	1.219	1.219	1.206(4)	1.218	1.218	1.21(2)
C-Br	1.875	1.875	1.885(5)	1.879	1.879	1.893(3)	1.881	1.881	1.896(4)	1.878	1.878	1.894(3)	1.881	1.881	1.90(1)
N-H	1.083	1.081	0.86	1.016	1.016	0.86	1.014	1.014	0.86	1.016	1.016	0.86	1.014	1.014	0.86
C11-	1.095	1.095	0.97	1.094	1.094	0.97	1.091	1.091	0.97	1.089	1.089	0.97	1.096	1.096	0.97
H11															
C12-							1.096	1.096	0.97				1.096	1.096	0.97
H12															
C-H	1.086	1.086	0.97	1.086	1.086	0.97	1.086	1.086	0.97	1.086	1.086	0.97	1.086	1.086	0.93

Table 25 Selected vibrational frequencies in $(v(cm^{-1}))$ of 2MPA, 3MPA, 2AMT, 2EPA and 2AET

	2MPA	3MPA	2EPA	2AMT	2AET
	(cm ⁻¹)	(cm^{-1})	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)
vCH)ar	2988 (3061,	2986(3076,	2982(3061,	2986(3082,	2986(3068,
,	3012)*	3022)	3003)	3012)	2960)
v (C-		2864	2874	2870	2892
H11)					
v (C-			2838		2814
H12)					
ν	1640	1649	1644	1651	1641
(C1=O1)					
v	1664(1680)	1663(1683)	1662(1672)	1662(1685)	1664(1678)
(C1=O2)					
v (C=C)	1554(1564)	1561(1564)	1556(1572)	1564(1570)	1558(1577)
v (NH)	3242(3242)	3283(3267)	3309(3321)	3285(3284)	3301(3263)
v (C-Br)	766(638)	752(643)	753(653)	757(623)	751(686)

*Experimental values

	2MPA		3MPA		2EPA 2AMT		2AET			
δ(ppm)		δ(ppm))	δ(ppm))	δ(ppm))	δ(ppm)		
	Theoretical	Obs.	Theoretical	Obs.	Theoretical	Obs.	Theoretical	Obs.	Theoretical	Obs.
H1	8.3	7.91	6.7	6.28	6.8	7.12	6.6	6.10	6.7	6.18
H5	9.0	8.16	8.8	8.12	9.0	8.13	8.9	8.14	9.0	8.15
H6	8.4	7.72	8.3	7.70	8.4	7.69	8.3	7.72	8.4	7.72
H7	8.5	7.72	8.4	7.70	8.5	7.64	8.4	7.64	8.5	7.63
H8	9.0	8.06	9.0	8.01	9.0	8.00	8.9	8.03	9.0	8.02
H11	5.5	5.21	5.3	5.11	4.4	4.32	5.3	5.25	4.2	4.18
H12					3.2	3.17			3.3	3.23
H13	8.1	7.30	8.8	7.64			7.7	7.07		
H14	8.6	7.64	7.9	7.33	8.0	7.21	7.4	7.00	7.8	6.92
H15	8.5	7.27	8.9	8.57	8.4	7.60	8.0	7.29	7.5	6.97
H16	9.2	8.65	9.1	8.62	7.8	7.18			7.6	7.20
H17					9.1	8.59				

Table 26¹H chemical shift (in ppm) in solvent Dimethyl sulfoxide and observed ¹H chemical shifts in CDCl₃

Table 27 Wavelength maxima (λ_{max}), oscillator strengths (*f*)and assignments of bands in the electronic spectra of the 2MPA, 3MPA,2AMT,2EPA and 2AET in methanol from TDDFT

2MPA				3MPA				2EPA			2AMT				2AET		
Transition	E _{ex} (eV)	λ_{max} (nm)	(f)	Eex (eV)	$\begin{array}{c} \lambda_{max} \\ (nm) \end{array}$	(f)	E _{ex} (eV)	λ_{max} (nm)	(f)	E _{ex} (eV)	λ_{max} (nm)	(f)	E _{ex} (eV)	λ_{max} (nm)	(f)		
Homo→Lumo	3.1	401 (467)*	0.1369	3.2	385 (471)	0.0721	3.1	394 (477)	0.0756	3.2	384 (463)	0.0681	3.1	402 (472)	0.0911		
Homo→	5.5	223	0.3378	5.7	218	0.3396	5.6	223	0.3817	5.6	221	0.4029	5.5	226	0.2298		
Lumo+1																	
Homo→	7.0	177	0.0391	6.5	191	0.0407				5.6	220	0.0358					
Lumo+2																	
Homo-1→Lumo	5.9	210	0.1428	5.6	221	0.0286	6.3	196	0.1463	4.9	254	0.1373	4.3	286	0.0564		
Homo-1→	6.3	196	0.3419										6.9	180	0.0096		
Lumo+1																	
Homo-1→	5.5	225	0.3443	5.5	225	0.1083	5.5	226	0.1734	5.7	216	0.1116	5.6	219	0.3022		
Lumo+2																	
Homo-2	4.5	278	0.1183	4.4	281	0.1167	4.4	279	0.116				4.8	258	0.1965		
→Lumo																	
Homo-2 →				6.2	199	0.0643	6.2	200	0.0168								
Lumo+1																	
Homo-2 →													6.0	207	0.1477		
Lumo+2																	
Homo-	7.8	259	0.3451	6.6	186	0.0118				4.4	281	0.1174	4.5	275	0.0683		
3→Lumo																	
Homo-3→	6.1	202	0.1220							6.2	199	0.0884	6.2	197	0.1647		
Lumo+1																	
Homo-3→				5.3	233	0.0190	5.4	231	0.0126								
Lumo+2																	
Homo-				4.8	259	0.3019	4.8	258	0.3009	4.7	263	0.1689					
4→Lumo																	

* Observed values

Table 28 Separation of HOMO, LUMO energies and global indices of 2MPA, 3MI	PA,
2AMT, 2EPA and 2AETwB97x/6-31+G(d,p)	

Molecular properties	2MPA	2MPA ^a	3MPA	3MPA ^a	2EPA	2EPA ^a	2AMT	2AMT ^a	2AET	2AET ^a
∆EHOMO-LUMO	0.267	0.223	0.276	0.235	0.271	0.233	0.276	0.233	0.268	0.249
$Softness(\sigma)$	7.496	8.983	7.235	8.524	7.371	8.566	7.239	8.602	7.468	8.032
Global Hardness(ŋ)	0.133	0.111	0.138	0.117	0.136	0.117	0.138	0.116	0.134	0.124
Electronic chemical potential(µ)	-0.172	-0.009	-0.188	-0.019	-0.178	-0.012	-0.184	-0.015	-0.171	-0.021
Electronegativity(χ)	0.172	0.009	0.188	0.019	0.178	0.012	0.184	0.015	0.171	0.021
Global electrophilicity index(ω)	0.015	0.000	0.018	0.000	0.016	0.000	0.017	0.000	0.015	0.000

^a anionic form