Electronic Supplementary Information

Fabrication of highly visible-light-responsive ZnFe₂O₄/TiO₂ heterostructures for the enhanced photocatalytic degradation of organic dyes

Thanh Binh Nguyen¹ and Ruey-an Doong^{1,2*}

- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan.
- Institute of Environmental Engineering, National Chiao Tung University, 1001, University Road, Hsinchu, 30010, Taiwan.

^{*} Corresponding author. 1001 University Road, Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan. E-mail address: radoong@nctu.edu.tw; radoong@mx.nthu.edu.tw; Tel: +886-3-5726785; Fax: +886-3-5725958.

Fig. S1. SEM images of ZnFe₂O₄-TiO₂ nanocomposites at various ZnFe₂O₄ loadings of (a) 0.2, (b) 0.5 (c) 1 and (d) 2 wt%.

Fig. S2. Particle size distribution histogram of (a) 0.2, (b) 0.5, (c) 1 and 2 wt% $ZnFe_2O_4$ -TiO₂ nanocomposites.

Fig. S3. EPMA images of ZnFe₂O₄-TiO₂ nanocomposites at various ZnFe₂O₄ loadings of (a) 0.2,
(b) 0.5, (c) 1 and (d) 2 wt%.

Fig. S4. (a) Nitrogen adsorption-desorption isotherms and (b) pore size distribution of $ZnFe_2O_4$ and $ZnFe_2O_4$ -TiO₂ nanocomposites at various loadings of 0.2-2 wt%.

Fig. S5. Plots of $(\alpha h \upsilon)^{1/2}$ vs. photon energy $h \upsilon$.

Fig. S6. The adsorption of RhB by various TiO₂-based nanomaterials.

Fig. S7. Zeta potential of 1 wt% $ZnFe_2O_4$ -TiO₂ as a function of pH value

Fig. S8. UV-Vis absorption spectra of RhB in the presence of 1 wt% $ZnFe_2O_4$ -TiO₂ at different photocatalytic degradation times.

Fig. S9. Photocatalytic activity of ZnFe₂O₄ toward dyes decomposition.

Fig. S10. Change in PL spectra with irradiation time for 1 wt% $ZnFe_2O_4$ -TiO₂ in a 5 × 10⁻⁴ M basic solution of terephthalic acid (excitation at 315 nm) under visible light irradiation.