SUPPORTING INFORMATION

Facile one-pot synthesis of urchin-like Fe-Mn binary oxide nanoparticles for effective adsorption of $\mathrm{Cd}(\mathrm{II})$ from water

Lu-Bin Zhong, ${ }^{\mathrm{a}}$ Jun Yin, ${ }^{\text {a,b }}$ Shao-Gen Liu, ${ }^{\text {b }}$ Qing Liu, ${ }^{\text {a,c }}$ Yue-San Yang ${ }^{\text {a,c }}$ and Yu-Ming Zheng*a
${ }^{a}$ CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, P. R. China. ${ }^{\mathrm{b}}$ School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China.
${ }^{\text {c College of }}$ Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.

E-mail address: ymzheng@iue.ac.cn; Fax: +86-592-6190977; Tel:+86-592-6190785

Table S1 Thermodynamic parameters for $\mathrm{Cd}(\mathrm{II})$ adsorption on UMFBO at different temperatures.

Temperature (K)	K_{d} $\left(\mathrm{L} \mathrm{g}^{-1}\right)$	ΔG $\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	ΔH $\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	ΔS $\left(\mathrm{~J}(\mathrm{~mol} \mathrm{~K})^{-1}\right)$
283	1350	-16.96		
298	1400	-17.95	5.174	0.078
313	1650	-19.30		

Figure S1 Distribution of cadmium species as a function of solution pH .
(Simulation condition: Cd concentration $=0.5 \mathrm{mM}$, temperature $=25^{\circ} \mathrm{C}$).

Figure S2 Effect of temperature on $\mathrm{Cd}(\mathrm{II})$ adsorption isotherm on the UFMBO.

Figure S3 Effect of ionic strength on adsorption of $\mathrm{Cd}(\mathrm{II})$ on the UFMBO. Experimental conditions: initial $\mathrm{Cd}(\mathrm{II})$ concentration $=50 \mathrm{mg} \mathrm{L}^{-1}$, adsorbent dosage $=$ $0.5 \mathrm{~g} \mathrm{~L}^{-1}$, temperature $=25^{\circ} \mathrm{C}$, contact time $=24 \mathrm{~h}$, solution $\mathrm{pH}=6$. Error bars represent the standard deviation of triplicate experiments.

Figure S4 Removal of trace level of $\mathrm{Cd}(\mathrm{II})$ using the UFMBO with different dosages.
Experimental conditions: initial $\mathrm{Cd}(\mathrm{II})$ concentration $=100 \mu \mathrm{~g} \mathrm{~L}^{-1}$; solution $\mathrm{pH}=6.0$, contact time $=24 \mathrm{~h}$, temperature $=25^{\circ} \mathrm{C}$.

Figure S5 FTIR spectra of UFMBO before and after Cd(II) adsorption.

