| 1  | G-quadruplex DNA-binding quaternary alkaloids from Tylophora                                                                                   |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2  | atrofolliculata                                                                                                                                |  |  |
| 3  | Cheng-Yu Chen <sup>1</sup> , Li-Ping Bai <sup>1</sup> , Zhuo-feng Ke <sup>2</sup> , Yan Liu <sup>3</sup> , Jing-Rong Wang <sup>1*</sup> , Zhi- |  |  |
| 4  | Hong Jiang <sup>1*</sup>                                                                                                                       |  |  |
| 5  | <sup>1</sup> State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine                    |  |  |
| 6  | and Health, Macau University of Science and Technology, Taipa, Macau, China                                                                    |  |  |
| 7  | <sup>2</sup> School of Materials Science and Engineering, MOE Key Laboratory of Bioinorganic and Synthetic Chemistry,                          |  |  |
| 8  | School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China                                                                        |  |  |
| 9  | <sup>3</sup> School of chemical engineering and light industry, Guangdong University of Technology Guangzhou 510006, PH                        |  |  |
| 10 | ) China                                                                                                                                        |  |  |
| 11 |                                                                                                                                                |  |  |
| 12 | Contents                                                                                                                                       |  |  |
| 13 | Figures S1 and S2 Fluorescent spectra                                                                                                          |  |  |
| 14 | <b>Figure S3</b> Molecular modeling of alkaloids <b>6</b> and <b>7</b> binding with human telomeric G-                                         |  |  |
| 15 | 5 quadruplex DNA (PDB entry 2JPZ)                                                                                                              |  |  |
| 16 | <b>Figures S4-S23</b> <sup>1</sup> H, <sup>13</sup> C NMR, HSQC, HMBC and <sup>1</sup> H- <sup>1</sup> H COSY spectra of                       |  |  |
| 17 | compounds 1-4.                                                                                                                                 |  |  |
| 18 | Table S1 Percent fluorescence decrease of TO at the maximum emission wavelength                                                                |  |  |
| 19 | of 530 nm by compound 6 or 7 displacement                                                                                                      |  |  |
| 20 | <b>Tables S2</b> $^{1}$ H-NMR (600 MHz) and $^{13}$ C-NMR (150 MHz) spectral data of 6.                                                        |  |  |
| 21 |                                                                                                                                                |  |  |
|    |                                                                                                                                                |  |  |



Figure S1 Fluorescent spectra. The spectra of 0.5  $\mu$ M triazole orange (A), 9.5  $\mu$ M compound **6** (B), 9.5  $\mu$ M compound **6** with 0.25  $\mu$ M DNA G-quadruplex (C) in 25 mM Tris-HCl buffer (pH 7.45) containing 100 mM KCl. The fluorescence spectra of 0.5  $\mu$ M triazole orange with 0.25  $\mu$ M d[(TTAGGG)<sub>4</sub>TTA] (D). All the spectra were measured with the excitation wavelength at 501 nm.

- 30
- 31
- 32
- 33
- 34
- 35



37 Figure S2 Fluorescent spectra. The spectra of 0.5 μM triazole orange (A), 9.5 μM 38 compound 7 (B), 9.5 μM compound 7 with 0.25 μM DNA G-quadruplex (C) in 25 mM 39 Tris-HCl buffer (pH 7.45) containing 100 mM KCl. The fluorescence spectra of 0.5 μM 40 triazole orange with 0.25 μM d[(TTAGGG)<sub>4</sub>TTA] (D). All the spectra were measured 41 with the excitation wavelength at 501 nm.

## 43 Docking simulations

The receptor human telomeric DNA d[(TTAGGG)4TTA] G-quadruplex was obtained from the Protein Data Bank (PDB entry 2JPZ).<sup>1</sup> Gasteiger partial charges are assigned and non-polar hydrogen atoms are merged with AutoDock Tools. The whole 3-D space of the receptors is searched to obtain the most possible binding sites. The grid maps were calculated using a 120×120×120 points grid box with 0.375 Å grid-point spacing. All the docking simulations were performed with the AutoDock4.2 program.<sup>2</sup> The Lamarckian genetic algorithm was used for each compound. At least 80 docking runs were performed, using a population size of 250 individuals with a maximum number of energy evaluations at  $2.5 \times 10^8$  and a maximum number of generations at  $2.7 \times 10^4$ . To estimate the energetics of the unbound states of the receptor and the compounds, an extended model was used to evaluate their binding free energies.

55



Figure S3. Molecular modeling of alkaloids 6 and 7 binding with hu
 quadruplex DNA (PDB entry 2JPZ).





Figure S5 <sup>13</sup>C NMR spectrum of compound 1.



Figure S6 HSQC spectrum of compound 1.



Figure S7 HMBC spectrum of compound 1.











**Figure S10** <sup>13</sup>C NMR spectrum of compound **2**.



Figure S11 HSQC spectrum of compound 2.



Figure S12 HMBC spectrum of compound 2.



**Figure S13** <sup>1</sup>H-H COSY spectrum of compound **2**.



**Figure S14** <sup>1</sup>H NMR spectrum of compound **3**.







Figure S16 HSQC spectrum of compound 3.



Figure S17 HMBC spectrum of compound 3.



**Figure S18** <sup>1</sup>H-<sup>1</sup>H COSY spectrum of compound **3**.



**Figure S19** <sup>1</sup>H NMR spectrum of compound **4**.







Figure S21 HSQC spectrum of compound 4.



Figure S22 HMBC spectrum of compound 4.



**Figure S23** <sup>1</sup>H-<sup>1</sup>H COSY spectrum of compound **4**.

104 Table S1 Percent fluorescence decrease of TO at the maximum emission wavelength

105 of 530 nm by compound 6 or 7 displacement

## **Table S2** <sup>1</sup>H-NMR (600 MHz) and <sup>13</sup>C-NMR (150 MHz) spectral data of 6 ( $\delta$ in ppm,

J in Hz, measured in CD<sub>3</sub>OD).

| position            | $\delta_{ m H}$ | $\delta_{ m C}$ |
|---------------------|-----------------|-----------------|
| 1                   | 7.98, d, 6.6    | 126.9           |
| 2                   | 6.86, d, 7.2    | 115.4           |
| 3                   |                 | 161.8           |
| 4                   | 6.67, s         | 104.5           |
| 5                   | 6.81, s         | 107.6           |
| 6                   |                 | 148.0           |
| 7                   |                 | 148.6           |
| 8                   | 7.12, s         | 103.5           |
| 9                   | 9.38, s         | 136.3           |
| 11                  | 4.77, s         | 57.9            |
| 12                  | 2.57, s         | 21.3            |
| 13                  | 3.45, s         | 30.8            |
| 13a                 |                 | 149.5           |
| 14                  | 8.18, s         | 115.2           |
| 4a                  |                 | 133.3           |
| 4b                  |                 | 123.5           |
| 8a                  |                 | 118.6           |
| 8b                  |                 | 123.1           |
| 14a                 |                 | 138.7           |
| 14b                 |                 | 117.4           |
| OCH <sub>3</sub> -3 | 3.86, s         | 54.8            |
| OCH3-7              | 3.98, s         | 55.9            |

## 115 **References**

- 116 1. (a) S. Alcaro, C. Musetti, S. Distinto, M. Casatti, G. Zagotto, A. Artese, L. Parrotta,
- 117 F. Moraca, G. Costa, F. Ortuso, E. Maccioni and C. Sissi, J. Med. Chem., 2013, 56,
- 118 843. (b) LP. Bai, J. Liu, L. Han, H.-M. Ho, R. Wang, and Z.-H. Jiang, Anal. Bioanal.
- 119 Chem. 2014, 406, 5455.
- J. Dai, M. Carver, C. Punchihewa, R. Jones, D. Yang, *Nucleic Acids Res.* 2007, 35,
   4927.
   4927.
   123
   124
   125
   126
   127
   128
   129
   130
   131
   132