Supporting Information

Defects induced changes in the Electronic structures of MgO and their correlation with the optical properties: A special case of electron-hole recombination from the conduction band

Nimai Pathak^{ac*}, Partha Sarathi Ghosh^{bc}, Santosh Kumar Gupta^{ac}, Ramakant Mahadeo Kadam^{ac} and Ashok Arya^{bc}

^a Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India

^b Materials Science Division, Bhabha Atomic Research Centre, Mumbai, 400085, India

c. Homi Bhabha National Institute, Mumbai-400085, India

*Email: *nmpathak4@gmail.com, nimai@barc.gov.in* Telephone- +91-22-25590715/0636 Fax- +91-22-25405151

1. Instrumentation:

RIGAKU Miniflex-600 diffractometer operating in the Bragg-Brentano focusing geometry has been used for Powders XRD of the samples where Cu-K α radiation (λ = 1.5406Å) has been used as X-ray source. The instrument was operated at 40 kV voltage and 30 mA current. The XRD pattern has been taken from 20° to 80° 20 range with scan rate of 1°/minute. Reflectancemode absorbance spectrum was recorded with a UV–Visible spectrophotometer (Ocean Optics USB3900 Miniature Fiber Optic Spectrometer) using Halogen light source HL 2000. PL data were recorded on an Edinburgh CD-920 unit which is equipped with M 300 monochromators. F-900 software provided by Edinburgh Analytical Instruments, UK was used for the data acquisition and analysis. Emission spectra for a particular sample was recorded with a Xenon flash with a frequency of 100 Hz. Multiple Scans (at least five) were taken to minimize the fluctuations in peak intensity and maximize S/N ratio. Fluorescence lifetime measurements were based on well established Time-correlated single-photon counting (TCSPC) technique. The MgO compounds were excited with 250 nm laser pulses provided by the frequency-doubled output of the Nd:YAG pumped, OPO laser-regenerative amplifier operating at a 10 Hz repetition rate.

Figure S1. Excitation spectra of Mg-600 at $\lambda_{em} = 540$ nm

Figure S2. Decay profiles of the MgO-600 nanoparticles at $\lambda_{ex} = 250$ nm and at different emission wavelength viz. a) 605 nm, b) 680 nm & c) 850 nm

Figure S3. TRES at 2µs - TRES at 20µs

Figure S4. TRES at 20 µs - TRES at 40 µs

Figure S5. TRES at 100 µs - TRES at 300 µs

Figure S6. TRES at 300 μs - TRES at 600 μs

Figure S7. TRES at 800 µs

Figure S8. Gaussian Fit of TRES in the Figure 7f

Figure S9. Gaussian Fit of TRES in the Figure 7g

 Table S1: Lifetime values of MgO-600 nanoparticles at different emission wavelength and their respective contributions.

Wavelength	τ
(nm)	(µs)
390	11.22
450	13.54
490	212.2
540	82.48
605	15.09
680	362
850	13.23