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1. Gelation Tests

Gelation test were carried out by adding exact weights of compounds 3a-3gindividually to 1 ml
of appropriate solvent in a vial. The vial was sealed and suspension was heated to dissolve the
compound to get a clear solution. The solution was allowed to cool after which gelation was
tested by inverting the sample vial. If the inverted vial was able to hold the system, it was
considered as a gel. Apart from 3a and 3g the other triazoylarabinoside derivatives 3b, 3c-f

were also tested in the same manner but they were not able to form gels in any solvent.

2. Determination of MinimumGelation Concentration(MGC)

1 ml of solvent was taken in 5 ml of sample vial, 1 mg of gelator 3a and 3g was added to the
sovent which was then heated till aclear solution was obtained. Then the solution was cooled
and the vial inverted to confirm gelation. If partial or no gelation was observed, the cycle was
repeated adding 1 mg of 3a or 3g at the beginning of each heating cooling cycle till complete
gelation of the solvent was observed by inversion of the vial.

3. Gel characterization
3.1 Optical Microscopy

An optical microscope (Olympus - CH20i) equipped with a digital camera (Nikon - Eclipse
E200 MV Pole) for digital imaging was used for analyzing the microstructure of the organogels.
The experiments were carried out by placing a small amount of the gel sample at a particular

concentration on a 3 inch x 2 inch glass slide and viewing it with the microscope.

3.2  Field Emission Scanning Electron Micrographs (FESEM)

The experiments were performed by using a Zeiss supra-55 FESEM. The xerogels of the
samples were prepared by dropcasting the hot 1% (w/v) solution of gelator 3aor3g in gelling
solvent on a glass slide (2mm x 2mm) and drying them overnight in air inside a vacuum
dessicator. The xerogelwas then placed on a stub which was then coatedwithgold by a Quorum

-Q150RES sputter coater undervacuum of 5 x 10° milibar and a current of 20 mA for 2 minutes.

3.4  Atomic force microscopy (AFM)

The experiments were performed by using a Bruker Dimension Icon instrument.The samples

were prepared by dropcasting adilute solution of gelator 3a and 3g in m-xylene solvent on a



glass slide (2mm x 2mm) and drying them overnight under vacuum inside a dessicator.AFM
images of the samples were obtained usingTapping Mode at 1 Hz scanning rate with a silicon
cantilever tip (RFESP-MPP-21100-10) at a resonance frequency of 75 kHz and a spring

constant of 3 Nm-.

3.5 Wide Angle X-ray Diffraction (WXRD)

The xerogels of the sample were prepared by dissolcing 3a (100 mg) and 3g (100 mg) in 10 mL
of Benzene in a beaker and drying them overnight in a vacuum dessicator. The WXRD
diffractogram of the samples were recorded on a ProroAXRD diffractometer. X-rays of
wavelength 1.54 A° were used.



4 Table S1. Gelation ability of 3a-g with various solvents.2

Compound 3a (MGC,> Ty) 3b 3c 3d 3e 3f 3g(MGC,° Ty)
Solvent
Benzene G, (1.0%, 44-45 °C) S S S S S G, (0.7%, 49-50 °C)
Toluene G, (1.0%, 46-47 °C) S S S S S G, (0.5%, 53-54 °C)
o-xylene G, (0.9%, 47-48 °C) S S S S S G, (0.5%, 57-58 °C)
m-xylene G, (0.7%, 48-49 °C) S S S S S G, (0.5%, 52-53 °C)
p-xylene G, (0.9%, 46-47 °C) S S S S S G, (0.5%, 51-52 °C)
Chlorobenzene G, (1.0%,45-46 °C) S S S S S G, (0.7%, 53-54 °C)
Hexane | | I | | I I
n-heptane | | I | | I I
Cyclohexane | | I | | I I
Methylcyclohexane | | | I | | I I
DCM S S S S S S S
Chloroform S S S S S S S
Ethyl acetate S S S S S S S
Aceto nitrile S S S S S S S
Ethanol G, (1.0, 48-49 °C) S S S S S S
Methanol S S S S S S S
n-butyl alcohol S S S S S S S
Amyl alcohol S S S S S S S
Water | | I | | I I
DMF S S S S S S S
DMSO S S S S S S S
Kerosene G (0.3%, 69-70 °C) S S S S S G (0.3%, 71-72 °C)
Petrol G, (0.3%, 63-64 °C) S S S S S G, (0.3%, 61-62 °C)
Diesel G, (0.3%, 66-67 °C) S S S S S G, (0.3%, 68-69 °C)

a G = Gel; S = Solution; | = Insoluble. ° (w/v).




5 Figures and graphs
5.1 Figures of gels at various concentrations
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Figure S1.Gels from Benzene and 3a at various concentrations of 3a(a) at 1.0% (w/v) (b) at 1.1% (w/v)
(c) at 1.2% (w/v) (d) at 1.3% (w/v) (e) at 1.4% (w/v).

Figure S2.Gels from tolueneand3a at various concentrations of 3a (a) at 1.0% (w/v) (b) at 1.1% (w/v) (c)
at 1.2% (w/v) (d) at 1.3% (w/v) (e) at 1.4% (w/v).




Figure S3.Gels from o-xylene and3a at various concentrations of 3a (a) at 0.9% (w/v) (b) at 1.0% (w/v)
(c) at 1.1% (w/v) (d) at 1.2% (w/v) (e) at 1.3% (w/v).

Figure S4.Gels from m-xylene and3a at various concentrations of 3a (a) at 0.7% (w/v) (b) at 0.8% (w/v)
(c) at 0.9% (w/v) (d) at 1.0% (w/v) (e) at 1.1% (w/v).

Figure S5.Gels from p-xylene and3a at various concentrations of 3a (a) at 0.9% (w/v) (b) at 1.0% (w/v)
(c) at 1.1% (w/v) (d) at 1.2% (w/v) (e) at 1.3% (w/v).

Figure S6.Gels from chlorobenzene and3a at various concentrations of 3a (a) at 1.0% (w/v) (b) at



1.1% (w/v) (c) at 1.2% (w/v) (d) at 1.3% (w/v) (e) at 1.4% (w/v).

Figure S7.Gels from ethanol and3a at various concentrations of 3a (a) at 1.0% (w/v) (b) at 1.1% (w/v)
(c) at 1.2% (w/v) (d) at 1.3% (w/v) (e) at 1.4% (w/v).

Figure S8.Gels from petrol and3a at various concentrations of 3a (a) at 0.3% (w/v) (b) at 0.4% (w/v) (c)
at 0.5% (w/v) (d) at 0.6% (w/v) (e) at 0.7% (w/v).
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Figure S9.Gels from diesel and3a at various concentrations of 3a (a) at 0.3% (w/v) (b) at 0.4% (w/v) (c)



at 0.5% (w/v) (d) at 0.6% (w/v) (e) at 0.7% (w/v).

Figure S10.Gels from Crude oil of3a at minimum gelation concentrations at 0.5% (w/v). (a) 1 ml Crude

oil (b) Crude oil gel

Figure S11.Gels from benzene and3g at various concentrations of 3g(a) at 0.7% (w/v) (b) at 0.8% (w/v)
(c) at 0.9% (w/v) (d) at 1.0% (w/v) (e) at 1.1% (w/v).

Figure S12.Gels from toluene and3g at various concentrations of 3g(a) at 0.5% (w/v) (b) at 0.6% (w/v)
(c) at 0.7% (w/v) (d) at 0.8% (w/v) (e) at 0.9% (w/v).



Figure S13.Gels from o-xylene and3g at various concentrations of 3g(a) at 0.5% (w/v) (b) at 0.6% (w/v)
(c) at 0.7% (w/v) (d) at 0.8% (w/v) (e) at 0.9% (w/v).
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Figure S14.Gels from m-xylene and3g at various concentrations of 3g(a) at 0.5% (w/v) (b) at 0.6% (w/v)
(c) at 0.7% (w/v) (d) at 0.8% (w/v) (e) at 0.9% (w/v).
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Figure S15.Gels from p-xylene and3g at various concentrations of 3g(a) at 0.5% (w/v) (b) at 0.6% (w/v)
(c) at 0.7% (w/v) (d) at 0.8% (w/v) (e) at 0.9% (w/v).
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Figure S16.Gels from chlorobenzene and3g at various concentrations of 3g(a) at 0.7% (w/v) (b) at
0.8% (w/v) (c) at 0.9% (w/v) (d) at 1.0% (w/v) (e) at 1.1% (w/v).
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Figure S17.Gels from petrol and3g at various concentrations of 3g(a) at 0.3% (w/v) (b) at 0.4% (w/v) (c)
at 0.5% (w/v) (d) at 0.6% (w/v) (e) at 0.7% (w/v).

Figure S18.Gels from diesel and3g at various concentrations of 3g(a) at 0.3% (w/v) (b) at 0.4% (w/v) (c)
at 0.5% (w/v) (d) at 0.6% (w/v) (e) at 0.7% (w/v).
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Figure S19. Gelation of crude-oil with gelator 3g (a) Crude-oil (b) Gelled crude-oil.

5.2 Tables for variation of Tg with concentration
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Figure S20. Variation of T4 with concentration for organogels of 3a.
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Figure S21. Variation of T4 with concentration for organogels of 3g.

5.3 Optical microscopy images

Figure S22.0ptical microscopy image for (a) 3a in m-xylene at 1% (w/v) (b)3g in m-xylene at 1% (w/v)

concentration.
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5.4 FESEM micrographs
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Figure S25.FESEM image of xerogel of 3a at 1% (w/v) concentration in o-xylene
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Figure S28.FESEM imageofxerogel of 3a at 1% (w/v) concentration in chlorobenzene
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Figure S31.FESEM image of xerogel of 3a at 1% (w/v) concentration in diesel
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Figure S34.FESEM image of xerogel of 3g at 1% (w/v) concentration in o-xylene
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Figure S37.FESEM image of xerogel of 3gat 1% (w/v) concentration chlorobenzene
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Figure S39.FESEM image of xerogel of 3g at 1% (w/v) concentration diesel

5.5 AFM images

Figure S40.AFM image of 3a in m-xylene (a) 2-D image (b) 3-D image
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Figure S41. AFM image of 3g in m-xylene (a) 2-D image (b) 3-D image
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5.6 Rheology
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Figure S42. (a) DSS cruve of 3a gel with benzene at 1% (w/v) at frequency 1 Hz and temperature 25 °C

(b) DFS cruve of 3a gel with benzene at 1% (w/v) at strain 0.001% and temperature 25 °C (c) DTS curve

of 3a gel with benzene at 1% (w/v) at frequency 1 Hz and temperature 25°C.
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Figure S43. (a)DSS cruve of 3a gel with toluene at 1% (w/v) at frequency 1 Hz and temperature 25 °C

(b) DFS cruve of 3a gel with toluene at 1% (w/v) at strain 0.001% and temperature 25 °C (c)DTS curve

of 3a gel with toluene at 1% (w/v) at frequency 1 Hz and temperature 25°C

19



100000 100000 100000 "
e (@) 1 .o (D) 1 )
. G .G . G
10000
_ 100004 100004
3 5 et 3
= 1000 a | et =
L] o U]
© - 1000 Jrmmmmmrnannenne st prurin, ¢ 1000 fonnes
100 [}
10+ T T T n 100 T \ 100 T T T T T ]
0.002 0.01 0.1 1 10 1 10 100 0 100 200 300 400 500 600
Strain [%)] Frequency [Hz] Time [Sec]

Figure S44. (a)DSS cruve of 3a gel with o-xylene at 1% (w/v) at frequency 1 Hz and temperature 25 °C

(b) DFS cruve of 3a gel with o-xylene at 1% (w/v) at strain 0.001% and temperature 25 °C (c) DTS curve

of 3a gel with o-xylene at 1% (w/v) at frequency 1 Hz and temperature 25°C.
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Figure S45. (a)DSS cruve of 3a gel with m-xylene at 1% (w/v) at frequency 1 Hz and temperature 25 °C

(b) DFS cruve of 3a gel with m-xylene at 1% (w/v) at strain 0.002% and temperature 25 °C (c)DTS curve

of 3a gel with m-xylene at 1% (w/v) at frequency 1 Hz and temperature 25°C.
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Figure S46. (a)DSS cruve of 3a gel with p-xylene at 1% (w/v) at frequency 1 Hz and temperature 25 °C

(b) DFS cruve of 3a gel with p-xylene at 1% (w/v) at strain 0.001% and temperature 25 °C (c)DTS curve

of 3a gel with p-xylene at 1% (w/v) at frequency 1 Hz and temperature 25°C.
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Figure S47. (a)DSS cruve of 3a gel with Chloro-benzene at 1% (w/v) at frequency 1 Hz and temperature

25 °C (b) DFS cruve of 3a gel with Chloro-benzene at 1% (w/v) at strain 0.001% and temperature 25 °C
(c)DTS curve of 3a gel with Chloro-benzene at 1% (w/v) at frequency 1 Hz and temperature 25°C.
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Figure S48. (a) DSS cruve of 3a gel with Ethanol at 1% (w/v) at frequency 1 Hz and temperature 25 °C

(b) DFS cruve of 3a gel with Ethanol at 1% (w/v) at strain 0.003% and temperature 25 °C (c)DTS curve

of 3a gel with Ethanol at 1% (w/v) at frequency 1 Hz and temperature 25°C.
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Figure S49. (a)DSS cruve of 3a gel with Petrol at 1% (w/v) at frequency 1 Hz and temperature 25 °C (b)

DFS cruve of 3a gel with Petrol at 1% (w/v) at strain 0.002% and temperature 25 °C (c)DTS curve of 3a

gel with Petrol at 1% (w/v) at frequency 1 Hz and temperature 25°C
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Figure S50. (a)DSS cruve of 3a gel with Diesel at 1% (w/v) at frequency 1 Hz and temperature 25 °C (b)

DFS cruve of 3a gel with Diesel at 1% (w/v) at strain 0.002% and temperature 25 °C (c)DTS curve of 3a

gel with Diesel at 1% (w/v) at frequency 1 Hz and temperature 25°C
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Figure S51. (a)DSS cruve of 3a gel with Crude oil at 2% (w/v) at frequency 1 Hz and temperature 25 °C

(b) DFS cruve of 3a gel with Crude oilat 1% (w/v) at strain 0.002% and temperature 25 °C (c)DTS curve

of 3a gel with Crude oil at 1% (w/v) at frequency 1 Hz and temperature 25°C.

1000004

100004

& .
10004
o

© 1004

()

10 T
0.002 0.01

01 1
Strain [%]

1000004

100004

[Pa]

© 10004
©

100

10
Frequency [Hz]

100

1000004 7
« G

100004
T
o tetes
© 1000
o e e S P
P 1

100

0

100 200 300 400 500 600
Time [Sec]

Figure S52. (a)DSS cruve of 3g gel with benzene at 1% (w/v) at frequency 1 Hz and temperature 25 °C

(b) DFS cruve of 3g gel with benzene at 1% (w/v) at strain 0.001% and temperature 25 °C (c)DTS curve

of 3g gel with benzene at 1% (w/v) at frequency 1 Hz and temperature 25°C.
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Figure S53. (a)DSS cruve of 3g gel with toluene at 1% (w/v) at frequency 1 Hz and temperature 25 °C
(b) DFS cruve of 3g gel with toluene at 1% (w/v) at strain 0.001% and temperature 25 °C (c)DTS curve

of 3g gel with toluene at 1% (w/v) at frequency 1 Hz and temperature 25°C.
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Figure S54. (a)DSS cruve of 3g gel with o-xylene at 1% (w/v) at frequency 1 Hz and temperature 25 °C
(b) DFS cruve of 3g gel with o-xylene at 1% (w/v) at strain 0.002% and temperature 25 °C (¢c)DTS curve

of 3g gel with o-xylene at 1% (w/v) at frequency 1 Hz and temperature 25°C.
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Figure S55. (a)DSS cruve of 3g gel with m-xylene at 1% (w/v) at frequency 1 Hz and temperature 25 °C
(b) DFS cruve of 3g gel with m-xylene at 1% (w/v) at strain 0.001% and temperature 25 °C (c)DTS curve

of 3g gel with m-xylene at 1% (w/v) at frequency 1 Hz and temperature 25°C.
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Figure S56. (a)DSS cruve of 3g gel with p-xylene at 1% (w/v) at frequency 1 Hz and temperature 25 °C

(b) DFS cruve of 3g gel with p-xylene at 1% (w/v) at strain 0.001% and temperature 25 °C (c)DTS curve

of 3g gel with p-xylene at 1% (w/v) at frequency 1 Hz and temperature 25 °C.
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Figure S57. (a)DSS cruve of 3g gel with chlorobenzene at 1% (w/v) at frequency 1 Hz and temperature

25 °C (b) DFS cruve of 3g gel with chlorobenzene at 1% (w/v) at strain 0.001% and temperature 25 °C

(c)DTS curve of 3g gel with chlorobenzene at 1% (w/v) at frequency 1 Hz and temperature 25°C.
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Figure S58. (a)DSS cruve of 3g gel with petrol at 1% (w/v) at frequency 1 Hz and temperature 25 °C (b)

DFS cruve of 3g gel with petrol at 1% (w/v) at strain 0.001% and temperature 25 °C (¢)DTS curve of 3g

gel with petrol at 1% (w/v) at frequency 1 Hz and temperature 25°C.
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Figure S59. (a)DSS cruve of 3g gel with diesel at 1% (w/v) at frequency 1 Hz and temperature 25 °C (b)

DFS cruve of 3g gel with diesel at 1% (w/v) at strain 0.002% and temperature 25 °C (c)DTS curve of 3g

gel with diesel at 1% (w/v) at frequency 1 Hz and temperature 25 °C.
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Figure S60. (a)DSS cruve of 3g gel with crude oil at 1% (w/v) at frequency 1 Hz and temperature 25 °C

(b) DFS cruve of 3g gel with crude oil at 1% (w/v) at strain 0.001% and temperature 25 °C (c)DTS curve

of 3g gel with crude oil at 1% (w/v) at frequency 1 Hz and temperature 25 °C.
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Figure S61. Curves for thixotropic experiment for the meta-xylene gel at 1% (w/v) concentration for (a) 3a

and (b)

39.
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5.7 PSOG of petrol, diesel and crude-oil

Figure S62. PSOG of petrol and recovery of congealed petrol using gelator 3a. (a) Water (b) Biphasic
mixture of petrol and water (c) congealed petrol layer (d) separated congealed petrol layer (e) transfer of
congealed petrol into a flask (f) residual water after removal of congealed petrol (g) distillation set-up for

recovery of petrol (h) petrol distillate (i) residual organogelator.
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Figure S63. Phase selective gelation of diesel using 3a in diesel (a) 4 ml of water. (b) Biphasic mixture of
water and diesel (c) Congealed diesel layer (d) separated congealed diesel layer (e) transfer of
congealed diesel gel into a flask (f) residue water after removal of congealed diesel (g) distillation set-

up for recovery of diesel (h) diesel distillate (i) residual organogelator.
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Figure S64. Phase selective gelation of petrol using 3g in petrol (a) 4 ml of water. (b) Biphasic mixture of
water and diesel (c) Congealed petrol layer (d) separated congealed petrol layer (e) transfer of congealed
petrol gel into a flask (f) residue water after removal of congealed petrol (g) distillation set- up for

recovery of petrol (h) petrol distillate (i) residual organogelator.
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Figure S65. Phase selective gelation of diesel using 3g in diesel (a) 4 ml of water. (b) Biphasic mixture of
water and diesel. (c) Congealed diesel layer (d) separated congealed diesel layer (e) transfer of
congealed diesel gel into a dish. (f) residue water after removal of congealed diesel (g) distillation set-

up for recovery of diesel. (h) diesel distillate (i) residual organogelator.
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Figure S66. Phase selective gelation of crude oil using 3g (a) Water (b) Biphasic mixture of water and
crude-oil (c) congealed crude-oil layer after addition of gelator (d) floating congealed crude-oil layer (e)

removed congealed crude-oil (f) residual water
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Spectra of 3a-3g
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Figure S67. 'H NMR spectra of 3a in CDCls.
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Figure S68. 1*C NMR spectra of 3a in CDCls.
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Figure S69. 'H NMR spectra of 3b in CDCls.
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Figure S70. *C NMR spectra of 3b in CDCls.
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Figure S71. 'H NMR spectra of 3¢ in CDCls.
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Figure S73. 'H NMR spectra of 3d in CDCls.
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Figure S74. *C NMR spectra of 3d in CDCls.
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Figure S75. 'H NMR spectra of 3e in CDCls.
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Figure S76. *C NMR spectra of 3e in CDCls.
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Figure S77. *H NMR spectra of 3f in CDCls.
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Figure S78. *C NMR spectra of 3f in CDCls.
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Figure S79. 'H NMR spectra of 3g in CDCls.
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Figure S80. *C NMR spectra of 3g in CDCls.
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