Optical and surface band bending mediated fluorescence

sensing properties of MoS₂ quantum dots

S. Hariharan, B.Karthikeyan*

Nanophotonics Laboratory, Department of Physics, National Institute of Technology,

Tiruchirappalli 620 015, India

Supporting Information

Figure S1: FTIR spectrum of prepared MoS₂ quantum dots.

Figure S1 depicts the FTIR spectrum of the prepared MoS_2 quantum dots. A characteristic peak found at 480 cm⁻¹ is attributed to the Mo-S vibrations. The bands observed around 581, 1112 and 1397 cm⁻¹ are assigned to the sulfate vibrations. The peaks around 1572

and 1637 cm⁻¹ are assigned to the N-H in-plane stretching vibration and N-H bending vibrations respectively. The broad band around 3315 cm⁻¹ is attributed to the N-H stretching vibrations.

Figure S2: $(\alpha hv)^2 vs hv plots of (a) MoS_2 (b) glucose and (c) BSA$

From the $(\alpha hv)^2 vs hv$ plots, the direct band gap of MoS₂ is found to be 3.52eV which is lesser than the HOMO-LUMO gap of glucose (3.65 eV) and BSA (5.2 eV). It supports that the electron transfer is possible only from glucose and BSA to MoS₂.