ESI for

Rhenium-promoted Pt/WO3/ZrO2: An efficient catalyst for aqueous glycerol

hydrogenolysis under reduced H2 pressure

Qing Tong,^{a,b} AnyiZong,^{a,b} Wei Gong,^c Lei Yu,^{*a, d} and Yining Fan^{*a}

^{*a*} Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Vehicle Emissions Control, Jiangsu Provincial Key Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China. Email: ynfan@nju.edu.cn; Fax: +86-25-83317761; Tel: +86-25-83594620

^b Nanjing University-Yangzhou Chemistry and Chemical Engineering Institute, Yangzhou, 211400, China.

^{*c*} Jinling College, Nanjing University, Nanjing 210089, China.

^d School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China. Email: yulei@yzu.edu.cn.

CONTENTS

1.	Glycrerol hydrogenolysis with extended reaction times	S2
2.	TEM images of the catalysts	S3
3.	The catalytic performance comparison between 2Pt/WO ₃ /ZrO ₂ and 1.5Pt-0.8Re/WO ₃ /ZrO ₂ catalysts	S4
4.	Catalytic performance of glycerol hydrogenolysis over 2Pt-Re/WO ₃ /ZrO ₂ catalysts	.S4
5.	Catalytic performance of glycerol hydrogenolysis over 2Pt-0.8Re/WO ₃ /ZrO ₂ catalysts under different	
	reaction temperatures	.S5
6.	Catalytic performance of glycerol hydrogenolysis over 2Pt-0.8Re/WO ₃ /ZrO ₂ catalysts under different H	2
	pressure	.S5
7.	$Catalytic \ performance \ of \ glycerol \ hydrogenolysis \ over \ 2Pt/WO_3/ZrO_2 \ and \ 2Pt-0.8 Re/WO_3/ZrO_2 \ catalysts$	
	under N ₂ atomsphere	S6
8.	Comparison of the methods	.S6

1. Glycrerol hydrogenolysis with extended reaction times

Figure S1 Catalytic perfomance of (A) 2%Pt/WO₃/ZrO₂, (B) 2%Pt-0.8%Re/WO₃/ZrO₂ catalysts.

2. TEM images of the catalysts

Figure S2 TEM images of (A) 2 %Pt/WO₃/ZrO₂ (10 nm), (B) 2 % Pt-0.8 %Re/WO₃/ZrO₂ (10 nm), (C) 2 % Pt/WO₃/ZrO₂ (20 nm) , (D) 2 % Pt-0.8 % Re/WO₃/ZrO₂ (20 nm) catalysts.

3. The catalytic performance comparison of glycrerol hydrogenolysis between 2Pt/WO₃/ZrO₂ and 1.5Pt-0.8Re/WO₃/ZrO₂ catalysts (Figure 1 in text)

Table S1 Catalytic performance of glycerol hydrogen	lysis over 2% Pt/WO ₃ /ZrO ₂ and	1.5 % Pt-0.8 % Re /WO ₃ /ZrO ₂ catalysts ^{a}
---	--	--

Entry	Gl.Conv. ^b		Others selectivity ^c				
	(mol%)	1,3-PDO	1,2-PDO	1-PO	2-PO	Total	(mol%)
1^d	57.7	28.9	14.6	46.9	6.4	96.8	3.2
2^e	68.2	25.9	27.3	34.4	6.8	95.7	4.3

^{*a*} Data after 14 h reaction; reaction conditions: 2g catalysts, 10 wt.% glycerol aqueous solution, H₂ pressure=2.5 MPa, reaction temperature=175 °C, WHSV=0.12 h⁻¹; ^{*b*} glycerol conversion; ^{*c*} others: acetone, propionate acid and ethylene glycerol; ^{*d*} 2 % Pt/WO₃/ZrO₂ catalyst; ^{*e*} 1.5 % Pt-0.8 % Re/WO₃/ZrO₂ catalyst.

4. Catalytic performance of glycrerol hydrogenolysis over 2Pt-Re/WO₃/ZrO₂ catalysts (Figures 2-3 in text)

Entry	xRe	Gl.Conv. ^b (mol%)		Others selectivity ^c				
	(wt. %)		1,3-PDO	1,2-PDO	1-PO	2-PO	Total	(mol%)
1	0	57.7	28.9	14.6	46.9	6.4	96.8	3.2
2	0.10	99.9	16.5	8.4	60.4	10.4	95.7	4.3
3	0.36	99.7	18.8	12.1	53.3	10.8	95.0	5.0
4	0.80	99.0	20.4	13.4	51.3	10.5	95.6	4.4
5	1.00	69.9	15.9	14.8	54.6	9.4	94.7	5.3
6	2.00	67.3	9.4	33.7	39.4	12.6	95.1	4.9
7^d	2.00	11.6	0.6	84.6	3.3	2.3	93.7	6.3

Table S2 Catalytic performance of glycerol hydrogenolysis over 2 % Pt-Re/WO₃/ZrO₂ catalysts ^a

^{*a*} Data after 14 h reaction; reaction conditions: 2g catalysts, 10 wt.% glycerol aqueous solution, H₂ pressure=2.5 MPa, reaction temperature=175 °C, WHSV=0.12 h⁻¹; ^{*b*} glycerol conversion; ^{*c*} others: acetone, propionate acid and ethylene glycerol; ^{*d*} 2 % Re/WO₃/ZrO₂ catalyst.

5. Catalytic performance of glycerol hydrogenolysis over 2Pt-0.8Re/WO₃/ZrO₂ catalysts under different reaction temperatures (Figure 4 in text)

Entry	t (°C) ^b	Gl.Conv. ^c		C3 alcohols s	electivity ((mol%)		Others selectivity ^d
		(mol%)	1,3-PDO	1,2-PDO	1-PO	2-PO	Total	(mol%)
1	135	6.4	40.4	21.0	25.2	6.2	92.9	7.1
2	155	30.5	37.9	9.2	42.6	7.6	97.3	2.7
3	165	45.7	29.8	9.6	49.4	8.3	97.2	2.8
4	170	56.2	26.2	12.9	47.3	8.9	95.3	4.7
5	175	99.0	20.4	13.4	51.3	10.5	95.6	4.4

Table S3 Catalytic performance of glycerol hydrogenolysis over 2 % Pt-0.8 % Re/WO₃/ZrO₂ catalysts under different reaction temperature ^{*a*}

^{*a*} Data after 14 h reaction; reaction conditions: 2g catalysts, 10 wt.% glycerol aqueous solution, H₂ pressure=2.5 MPa, WHSV=0.12 h⁻¹; ^{*b*} reaction temperature; ^{*c*} glycerol conversion; ^{*d*} others: acetone, propionate acid and ethylene glycerol.

6. Catalytic performance of glycerol hydrogenolysis over 2Pt-0.8Re/WO₃/ZrO₂ catalysts under different H₂ pressure (Figure 5 in text)

Entry	P. ^{<i>b</i>}	b Gl.Conv. ^c	C3 compounds selectivity (mol%)						Others selectivity ^d
		(mol%)	1,3-PDO	1,2-PDO	1-PO	2-PO	acetol	Total	(mol%)
1	0.1 ^e	96.8	1.8	13.7	13.4	3.2	63.1	95.2	4.8
2	0.5	99.7	19.1	28.6	24.4	7.1	12.8	92.0	8.0
3	1.0	94.8	15.8	31.7	37.4	7.8	2.6	95.4	4.6
4	1.5	99.1	20.4	32.3	35.4	6.3	1.8	96.3	3.7
5	2.0	99.6	20.8	27.8	40.0	5.9	0.7	95.3	4.7
6	2.5	99.0	20.4	13.4	51.3	10.5	/	95.6	4.4

Table S4 Catalytic performance of glycerol hydrogenolysis over 2 % Pt-0.8 % Re/WO₃/ZrO₂ catalysts under different H₂ pressure ^{*a*}

^{*a*} Data after 14 h reaction; reaction conditions: 2g catalysts, 10 wt.% glycerol aqueous solution, reaction temperature=175 °C, WHSV=0.12 h⁻¹; ^{*b*} H₂ pressure; ^{*c*} glycerol conversion; ^{*d*} others: acetone, propionate acid and ethylene glycerol. ^{*e*} Atmospheric pressure.

7. Catalytic performance of glycerol hydrogenolysis over 2Pt/WO₃/ZrO₂ and 2Pt-0.8Re/WO₃/ZrO₂ catalysts under N₂ atmosphere (Figure 6 in text)

Table S5 Catalytic performance of glycerol hydrogenolysis over 2 % Pt/WO₃/ZrO₂ and 2 % Pt-0.8 % Re/WO₃/ZrO₂ catalysts under N₂ atomsphere ^{*a*}

Entry	catalysts	Gl. Conv. ^b	C3 compounds selectivity (mol%)							Others selectivity
		(mol%)	1,3- PDO	1,2- PDO	1-PO	2-PO	actone	acetol	Total	(mol%) ^c
1	2Pt/WO ₃ /ZrO ₂	19.6	/	35.1	4.7	13.6	10.7	26.4	90.5	9.5
2	2Pt- 0.8Re/WO ₃ /ZrO ₂	18.9	1.4	21.4	10.3	12.2	27.9	17.8	91.0	9.0

^{*a*} Data after 14 h reaction; reaction conditions: 2g catalysts, 10 wt.% glycerol aqueous solution, reaction temperature = 175 °C, N₂ pressure=2.5 MPa, WHSV=0.12 h⁻¹; ^{*b*} glycerol conversion; ^{*c*} others: propionate acid and ethylene glycerol, ethanol.

8. Comparison of the methods

As described in introduction part in text, although 1,3-PDO are important raw material in the synthesis of polytrimethylene terephthalate (PTT), the other C3 alcohols and acetol are also useful chemicals in industrial production. 1-PO, the major product of this article with > 50% selectivity (Table S1, entry 4), is also very important an important solvent or starting material in pesticide, medicine and perfume industries and its **market demand** is growing fast in recent years. Therefore, **total selectivity of C3 alcohol** is a very important parameter to evaluate the catalysts. Low total selectivity of C3 alcohol means the generation of large amount of wastes, which is **not allowed** in large-scale production. In this work (Table S2, entry 23), we got >95% total C3 alcohol selectivity >90%, Table S2, entries 3, 5, 6-7, 9, 12-13, 17-22), the **glycerol conversion** of our work (>99%) is higher than all of them. The complete glycerol conversion of our work leads to high capacity in industrial production, which is also very important factor. In addition, our work requires the **lowest H**₂ **pressure** (2.5 MPa, Table S2, entries 23 *vs.* 1-22), which reduces the equipment requirements and energy consumption. Reference in Table S2, entry 20 obtained the highest 1,3-PDO selectivity (60.4%) and excellent C3 alcohol selectivity (99.6%), but unfortunately, the glycerol conversion was very low (33.1%).

Entry	Catlysts	$P (MPa)^a$	C (%) ^c	1,3-PDO (%) ^d	C3 (%) ^e	Ref. ^f
1	2% Pt/19.6% WO ₃ /ZrO ₂	8.0	78.4	24	64.2	3 <i>a</i>
2	3% Pt/10% WO ₃ /ZrO ₂	4.0	70.2	45.6	70.1	<i>3b</i>
3	5% Pt/W/ZrSi	5.0	54.3	52.9	97.6	3 <i>c</i>
4	2% Pt/WO ₃ /ZrO ₂	5.5	31.6	34.9	64.0	4 <i>a</i>
5	5.7 %Pt-4.6 %Re/C	4.0	20.0	34	100	4 <i>b</i>

 Table S6 comparison of the methods

6	2% Pt/ASA	4.5	19.8	4.5	90.2	4 <i>c</i>
7	$2\% Pt/WO_3/TiO_2/SiO_2$	5.5	15.3	50.5	93.6	4d
8	2% Pt/ Mesoporous WO3	5.5	18.0	39.3	84.3	4 <i>e</i>
9	2% Pt-H4SiW ₁₂ O ₄₀ /SiO ₂	6.0	81.2	38.7	>90	4 <i>f</i>
10	5% Pt/A2O3+STA	4.0	49	28	/	4h
11	2 % Pt/Ti ₈₀ W ₂₀	5.5	55.4	26.9	76.8	4 <i>i</i>
12	2% Pt-H ₄ SiW ₁₂ O ₄₀ /ZrO ₂	5.0	26.7	38.9	91.6	4 <i>j</i>
13	2% Pt-15% H ₄ SiW ₁₂ O ₄₀ /ZrO ₂	5.0	24.1	48.1	90.9	4k
14	5% Pt-Re/CNTs	4.0	20.0	~21	82	41
15	2% Pt/AlPO ₄	vapor phase	100	35.4	70.2	4 <i>m</i>
16	9% Pt/8%WO _x /Al ₂ O ₃	4.5	53.1	51.9	86.2	4 <i>n</i>
17	2% Pt-15% WO_x/Al_2O_3	5.0	53.4	58.9	92.0	40
18	5% Rh/SiO ₂ +Amberlyst	8.0	14.3	9.8	90.9	5 <i>a</i>
19	4% Rh-ReO _x /SiO ₂	8.0	79.0	14.0	99.4	5 <i>b</i>
20	4% Ir-ReO _x /SiO ₂ +H ₂ SO ₄	8.0	33.1	60.4	99.6	6 <i>a</i>
21	4% Ir–ReO _x /SiO ₂ + H-ZSM-5	8.0	58.8	44.7	98.7	6 <i>c</i>
22	Ru-4% Ir-ReO _x /SiO ₂	8.0	65.8	36.9	99.4	6e
23	2% Pt-0.8% Re/5%WO ₃ /ZrO ₂	2.5	>99	20.4	95.6	This work
	_,				2010	THIS WORK

^{*a*} H₂ pressure; ^{*b*} Reaction temperature; ^{*c*} glycerol conversion (%); ^{*d*} 1,3-PDO selectivity (%); ^{*e*} C3 alcohol selectivity (%); ^{*f*} Reference NO. cited in text.