Supplementary Data

The reaction mechanism in highly effective hydrodechlorination of *p*-chlorophenol over Pd/CNTs catalyst

Lijuan Lan^{a,b}, Fanglin Du^{a,*}, Chuanhai Xia^{c,*}

^a College of Materials Science and Engineering, Qingdao University of Science and

Technology, Qingdao 266042, China

^b School of Environment and Materials Engineering, Yantai University, Yantai 264005,

China

^c School of Resources and Environmental Engineering, Ludong University, Yantai 264025,
China

* Corresponding author: Chuanhai Xia

* Prof. Dr. Fanglin Du, E-mail: fldu@qust.edu.cn, Tel.: +86 532 84022870

** Prof. Dr. Chuanhai Xia, E-mail: chxia_ldu@hotmail.com, Tel.: +86 535 6016605

Table S1. Compare study on the HDC rate constants achieved by the use of CNT as catalyticsupport with other supports and those previously reported in the literatureS-2

	Halide	Solvent	Catalysts	Product	HDC rate (min ⁻¹)	Reference
1	4-CP	H ₂ O	5% Pd/CNTs	phenol	27.6	a
2	4-CP	H ₂ O	5% Pd/AC	phenol	20.7	а
3	4-CP	H ₂ O	5% Pd/ γ -Al ₂ O ₃	phenol	16.6	а
4	4-CP	H ₂ O	5% Pd/graphene	phenol	8.3	а
5	4-CP	H ₂ O	1% Pd/CNTs	phenol	34.5	а
6	4-CP	H ₂ O	1% Pd/AC	phenol	18.4	а
7	4-CP	50% H ₂ O	Pd/CNTs	phenol	19.92	а
8	4-CP	H ₂ O	Pd/AC	phenol	8.55	[R1]
9	4-CP	H ₂ O	Pd/RGO	phenol	1.01	[R2]
10	4-CP	H ₂ O	Pd/AC	phenol	0.05	[R2]
11	4-CP	H ₂ O	Pt/pillared clays	phenol	0.76	[R3]
12	4-CP	H ₂ O	Pd/pillared clays	phenol	7.56	[R3]
13	4-CP	H_2O	Rh/pillared clays	phenol	6.25	[R3]
14	4-CP	H ₂ O	$Pd-In/\gamma-Al_2O_3$	phenol	2.07	[R4]
15	4-CP	H_2O	$Pd-Cu/\gamma-Al_2O_3$	phenol	1.84	[R5]

Table S1 Compare study on the HDC rate constants achieved by the use of CNT as catalytic support with other supports and those previously reported in the literature

a: HDC rate (min⁻¹) means the initial activity of the catalysts which were obtained by the experiment at the conversion of 4-CP below 25%. 1, 2, 5, 6 were the results of this article.

HDC rate (min⁻¹) =
$$\frac{n_0 \times Conversion}{n_{Pd} \times Time}$$

where n_0 (mmol) was the initial molar of the reaction substrate, n_{Pd} (mmol) was the molar of Pd existed in the catalysts.

[S1] C.H. Xia, Y. Liu, S.W. Zhou, C.Y. Yang, S.J. Liu, J. Xu, J.B. Yu, J.P. Chen and X.M. Liang, *Journal of Hazardous Materials*, 2009, **16**, 1029-1033.

[S2] H.Y. Deng, G.Y. Fan, C.Y. Wang and L. Zhang, *Catalysis Communication*, 2014, **46**, 219-223.

[S3] C.B. Molina, A.H. Pizarro, J.A. Casas and J.J. Rodriguez, *Applied Catalysis B: Environmental*, 2014, **148-149**, 330-338.

[S4] J.B. Zhao, W.J. Li and D.R. Fang, *RSC Adv.*, 2015, 53, 42861-42868.

[S5] D.R. Fang, W.J. Li, J.B. Zhao, S. Liu, X.X. Ma, J.G. Xu and C.H. Xia, RSC Adv., 2014, 103, 59204-59210.